
Cost-based Fault-tolerance for Parallel Data Processing

Abdallah Salama* Carsten Binnig*† Tim Kraska† Erfan Zamanian†

*Baden-Wuerttemberg Cooperative State University † Brown University
Mannheim, Germany Providence, USA

ABSTRACT
In order to deal with mid-query failures in parallel data en-
gines (PDEs), different fault-tolerance schemes are imple-
mented today: (1) fault-tolerance in parallel databases is
typically implemented in a coarse-grained manner by rest-
arting a query completely when a mid-query failure occurs,
and (2) modern MapReduce-style PDEs implement a fine-
grained fault-tolerance scheme, which either materializes in-
termediate results or implements a lineage model to recover
from mid-query failures. However, neither of these schemes
can efficiently handle mixed workloads with both short run-
ning interactive queries as well as long running batch que-
ries nor do these schemes efficiently support a wide range
of different cluster setups which vary in cluster size and
other parameters such as the mean time between failures.
In this paper, we present a novel cost-based fault-tolerance
scheme which tackles this issue. Compared to the existing
schemes, our scheme selects a subset of intermediates to be
materialized such that the total query runtime is minimized
under mid-query failures. Our experiments show that our
cost-based fault-tolerance scheme outperforms all existing
strategies and always selects the sweet spot for short- and
long running queries as well as for different cluster setups.

1. INTRODUCTION
Motivation: Parallel Data Processing Engines (PDEs)

such as parallel databases (e.g., SAP HANA [7], Greenplum
[20] or Teradata [15]) or other modern parallel data mana-
gement platforms (e.g., Hadoop [21], Scope [25], Spark [24])
are used today to analyze large amounts of data in clusters
of shared-nothing machines. While traditional parallel da-
tabase systems have been designed to run in small clusters
with highly available hardware components, modern PDEs
are often deployed on large clusters of commodity machines
where mid-query failures are a more common case.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2749437.

 0

 20

 40

 60

 80

 100

 0 2
0

 4
0

 6
0

 8
0

 1
0
0

 1
2
0

 1
4
0

 1
6
0

P
ro

b
a
b
ili

ty
 o

f
S

u
cc

e
ss

 (
in

 %
)

Runtime (in min)

Cluster 1 (MTBF=1 hour,n=100)
Cluster 2 (MTBF=1 week,n=100)

Cluster 3 (MTBF=1 hour,n=10)
Cluster 4 (MTBF=1 week,n=10)

Figure 1: Probability of Success of a Query

In order to deal with mid-query failures the before mentio-
ned systems implement different strategies: (1) fault-toleran-
ce in parallel databases is implemented in a coarse-grained
manner by restarting a query completely when a mid-query
failure occurs, whereas (2) modern MapReduce-style PDEs
implement a more fine-grained fault-tolerance scheme, which
either materializes each intermediate result (e.g., Hadoop) or
use lineage information to be able to recover sub-plans from
mid-query failures (e.g., Spark).

However, none of the before mentioned fault-tolerance sche-
mes can efficiently handle analytical workloads which consist
of a mix of queries with a strongly varying runtime ranging
from seconds to multiple hours as commonly found in real
deployments [16]. For example, while short running queries
in Hadoop typically suffer from high materialization costs,
long-running queries in parallel databases need to pay high
recovery costs when a mid-query failure occurs right before
the query is about to finish its execution. Moreover, other
parameters such as the size of the cluster (or more precise-
ly the number of nodes typically participating in executing
a query) and the mean time between failures (MTBF) also
have a strong influence on the efficiency of a fault-tolerance
scheme which is not reflected by existing schemes.

Figure 1 shows the relationship between the query runtime
and the probability that no mid-query failure is occurring
while executing the query in different cluster setups varying
in the cluster size (i.e., number of nodes) and the MTBF per
cluster node.1

1In this paper, we assume exponential arrival times between
failures and accordingly model the probability of having n-
failures in time interval t as a poisson process. That is, assu-
ming that a query is executed on n nodes with independent
failure rates, the likelihood of at least one failure within
the cluster is given as P (Nn

t > 0) = 1 − P (N1
t = 0)n =

1 − e
−tn

MTBF where Nn
t is the number of failures in time in-

terval t on n servers.

285

Cluster 1 in this figure represents a cluster setup with a
large number of nodes and a low MTBF per node (which can
typically be found in IaaS offerings such Amazon’s Spot In-
stances). For this type of cluster setup we can see that even
short-running queries already have a very low probability to
succeed. Thus, materializing intermediates to recover from
mid-query failures would be beneficial in this setup. Clus-
ter 4 represents a cluster setup with only a few nodes and
a much higher MTBF than cluster 1. In this cluster setup
materializing intermediates for queries results in unnecessa-
ry execution costs since the probability that queries in this
setup succeed is always very high. However, for the other
two cluster setups (i.e., cluster 2 and 3) the probability that
a query succeeds in one attempt strongly depends on the
query runtime.

Contributions: We present a novel cost-based fault-to-
lerance scheme. Compared to the existing fault-tolerance
schemes discussed before, our scheme selects a subset of in-
termediates to be materialized (further referred to as ma-
terialization configuration) such that the query runtime is
minimized under the presence of mid-query failures. In or-
der to select which intermediates should be materialized, we
present a cost model, which helps finding an optimal ma-
terialization configuration for a given query using statistics
about the query and the cluster (such as the cluster size and
the MTBF). Moreover, we present efficient pruning techni-
ques to reduce the search space of potential materialization
configurations enumerated by our cost model. We integrated
our approach as well as the existing fault-tolerance schemes
in an existing open-source parallel database called XDB [8]
and executed a comprehensive experimental evaluation. In
our evaluation, we show that our cost-based fault-tolerance
scheme can effectively deal with different kinds of queries
(i.e., varying runtime and costs for materialization) as well
as with different cluster setups and thus outperforms all exis-
ting strategies.

Outline: First, in Section 2 we discuss the assumptions
of our cost-based fault-tolerance scheme. In Section 3, we
present our cost-based fault-tolerance scheme in detail: We
show how our cost-based fault-tolerance scheme enumera-
tes different materialization configurations for a given query
and how this enumeration can be integrated into existing
cost-based optimizers. Moreover, we discuss details of how
our cost model estimates the runtime costs of a query under
mid-query failures in order to find the optimal materiali-
zation configuration. Afterwards, in Section 4, we discuss
pruning techniques to reduce the search space of the enume-
ration process. Our comprehensive experimental evaluation
with the TPC-H benchmark is then discussed in Section 5.
Finally, we conclude with related work in Section 6 and a
summary in Section 7.

2. ASSUMPTIONS
In this section, we first discuss our assumptions regarding

the parallel execution model. Secondly, we discuss which
types of failures our cost-based fault-tolerance scheme can
handle effectively.

2.1 Parallel Execution Model
Based on the typical design of Parallel Data Processing

Engines (PDEs) we assume that the parallel execution plan
P is represented as a directed acyclic graph (DAG) and that

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Node!1!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Node!2!

Scan!R! Scan!S!

Hash!Join!!

Repar44on!

Map!UDF!

Reduce!
UDF!

1! 2!

3!

4!

5!

Scheduling!

2!1!

3!

4!

5!

6!

Temp!

Temp!

2!1!

3!

4!

5!

7!

Temp!

Temp!

Par44oned!Database!
Part!1! Part!2!

6!

DAG$structured,Execu/on,Plan,P, Parallel,Execu/on,of,P,

Reduce!
UDF!7!

m=0 m=0

m=1

m=0

m=1

m=1 m=1 Temp! Temp!

Figure 2: Parallel Execution Model

the data is horizontally partitioned over multiple nodes of a
shared-nothing cluster. We further assume that one or more
operators o ∈ P are executed in parallel over partitions on
individual nodes Figure 2 shows an example of a plan and
its partition-parallel execution using two nodes.

In order to apply our cost-based fault-tolerance scheme
in a PDE, we require that for each operator o ∈ P there
exists a property m(o) which defines whether the output
of o should be materialized (i.e., m(o) = 1) or not (i.e.,
m(o) = 0) during execution. The set of all properties m(o)
for each o ∈ P is called materialization configuration MP

for plan P . For example, for the plan in Figure 2 the output
of the operators 3 and 5, 6 7 is set to be materialized.

For operators o ∈ P with m(o) = 1, we assume that the-
se are blocking operators (i.e., these operators materialize
their output completely before the consumer starts its exe-
cution). For operators o ∈ P where m(o) = 0, we assume
that the PDE uses its standard input/output behavior such
as pipelining data to the consuming operator. That way our
cost-based fault-tolerance scheme can be easily integrated
into many existing PDEs by simply materializing the out-
put of sub-plans.

Moreover, our cost-based fault-tolerance scheme supports
DAG-structured execution plans which contain arbitrary ope-
rators o ∈ P (i.e., UDFs as well as standard relational ope-
rators) as long as the following estimates can be provided
for each operator as input to our cost model: the runtime
cost tr(o) for executing an operator o and the materializati-
on cost tm(o) for materializing its output to a given storage
medium. Both tr(o) and tm(o) are given for partition parallel
execution (i.e., an operator is executed in parallel over all
partitions) Typically, these estimates are calculated based
on input/output cardinalities of each operator [14].

Finally, in order to support certain platform specific pro-
perties of individual PDEs, operators can be marked as non-
materializable (i.e., m(o) is constantly set to 0) or it can
be marked as always-materialized (i.e., m(o) is constantly
set to 1) before our cost model is applied. For example, so-
me PDEs always materialize the output of a repartitioning-
operator. In this case, these operators will be marked as
always-materialized. Operators that are either marked as
non-materializable or as always-materialized are called bound
operators, denoted as f(o) = 0. All other operators are called
free operators, denoted as f(o) = 1. All bound operators are
excluded by the enumeration process our cost-based fault-
tolerance scheme.

286

Notation Description

P DAG-structured execution plan P .
MP Materialization configuration for execution plan

P .
o Operator o ∈ P .
m(o) Indicates if an operator o ∈ P should be mate-

rialized (i.e., m(o) = 1) or not (i.e., m(o) = 0).
f(o) Indicates if an operator o ∈ P is free and opti-

mizable (f(o) = 1) or bound (f(o) = 0).
tr(o) The estimated accumulated execution cost of an

operator o ∈ P .
tm(o) The estimated accumulated materialization cost

of an operator o ∈ P .
t(o) The total accumulated runtime cost of an opera-

tor o ∈ P ; i.e. t(o) = tr(o) + tm(o) ·m(o).
P c Collapsed plan resulting from P and MP .
c Collapsed operator c ∈ P c.
Pt Path from a source to a sink in P c.
RPt Total execution cost of a path Pt without reco-

very costs for mid-query failures.
TPt Total execution cost of a path Pt with recovery

costs for mid-query failures.
CONSTx An internal constant x used by our cost model.

Table 1: Terminology and Description

2.2 Failure Model
As other work [18], we assume exponential arrival times

between failures and that failures are independent. Further-
more, our cost-based scheme is designed to handle process
and node failures in clusters of shared-nothing machines. In
order to give accurate estimates for the expected total run-
time in the presence of mid-query failures, our cost model
depends on the assumption that intermediates are not lost
if a mid-query failure occurs; i.e., our cost-based scheme as-
sumes that we can restart a query always from the last suc-
cessfully materialized intermediate result after a given mean
time to repair (MTTR). Consequently, if all intermediates
are materialized to a separate fault-tolerant storage medi-
um (e.g., Hadoop materializes its results to HDFS), our cost
model will be accurate since intermediates are not lost in
case of a mid-query failure. In case intermediate results can
be lost due to a mid-query failure, our cost model which
estimates the runtime of a query under failure will be too
optimistic. For example, if intermediate results are stored
locally per node to main memory, our cost model will not
be accurate since failures lead to a loss of intermediates. As
a future avenue of work, we plan to extend our cost model
to also be accurate in these cases.

It is important to note, that the assumption that inter-
mediates are not lost by mid-query failures, does not limit
the applicability of our cost-based strategy in PDEs. For ex-
ample, lineage information [24] makes it possible to recon-
struct lost intermediate results of individual nodes without
re-executing the whole query plan. Since typically only one
or two nodes fail at the same time our cost-based fault-to-
lerance scheme is still applicable though slightly optimistic.
For the rest of the paper, we assume that intermediate re-
sults are not lost due to a mid-query failure.

3. COST-BASED FAULT-TOLERANCE
In this section, we first give an overview of our cost-based

fault-tolerance scheme and then explain the individual steps
in details.

3.1 Overview
The main goal of our cost-based fault-tolerance scheme to

find an execution plan P and a materialization configuration

{4,$5}$

{1,$2,$3}$

{6}$

2.#Create#collapsed#plan#

{7}$

3.#Enumerate#paths#

{4,$5}$

{1,$2,$3}$

{6}$

{4,$5}$

{1,$2,$3}$

{7}$

Path Pt1 Path Pt2

4.#Es6mate#costs#

1$ 2$

3$

5$

4$

6$ 7$

m=0 m=0

m=1

m=0

m=1 m=1

m=1

1.#Enumerate#fault9tolerant#plans#

{4,$5}$

{1,$2,$3}$

{6}$

{4,$5}$

{1,$2,$3}$

{7}$

TPt1=8.13s TPt2=9.13s

Dominant$

Figure 3: Steps of our Procedure

MP is for a given query such that the total runtime of that
query under mid-query failures is minimized. Moreover, our
cost-based fault-tolerance scheme is a fine-grained strategy
which restarts only sub-plans on nodes that actually failed.

In order to find an optimal plan, cost-based optimizers
of PDEs typically enumerate different equivalent execution
plans P and apply a cost function to find the best plan
with the minimal runtime cost. However, neither do they
enumerate different materialization configurations for fault-
tolerance nor do they consider the costs for recovering from
mid-query failures. Therefore, we propose to change the cost-
based optimizer to use an enumeration procedure that finds
the best combination of a plan P and a materialization con-
figuration MP to minimize the overall run-time under the
previously described failure model. We call this combinati-
on [P,MP] a fault-tolerant plan.

In the following, we give a high-level description of our
procedure findBestFTP lan(Q), which finds the best fault-
tolerant plan for a given query (see Figure 3): (1) First, our
procedure enumerates different fault-tolerant plans [P,MP]
for the given query Q. (2) Second, for each enumerated fault-
tolerant plan, our procedure creates a collapsed plan P c whe-
re all operators in MP that do not materialize their output
are collapsed into the next materializing operator(s). The
idea of the collapsed plan is to represent the granularity of
re-execution using these collapsed operators (i.e., if a collap-
sed operator has finished successfully it does not need to be
re-executed again). (3) Third, for a collapsed plan, all execu-
tion paths Pt ∈ P c (i.e., paths from each source to each sink
in P c) are enumerated and (4) the total cost TPt is estimated
for each execution path Pt using a cost function that takes
statistics about the operators and the cluster (e.g., the mean
time between failures) into account. The path Pt with the
maximal estimated total cost for a given materialization con-
figuration is marked as dominant path of the fault-tolerant
plan [P,MP]. The dominant path is a good representative
for the total runtime of the fault-tolerant plan under failu-
res.2 In Figure 3, for example, path Pt2 is marked as the

2To estimate the cost we do not use the average expected
cost but a more pessimistic estimate using percentiles as
described in Section 3.5, which simplifies the model and al-
lows to avoid complex models involving the maximum over
stochastic variables.

287

dominant path and thus the estimated runtime for the gi-
ven fault-tolerant plan [P,MP] is the runtime of this path
under mid-query failures. Finally, our procedure selects that
fault-tolerant plan, which has the shortest dominant path
among all enumerated fault-tolerant plans.

Listing 1 shows the pseudo code of our procedure to im-
plement the before mentioned steps. The input is a given
query Q and the output is a fault-tolerant plan [P,MP]. In
order to estimate the total cost of a path Pt under mid-
query failures, the cost function estimateCost requires that
the following statistics are given: The runtime costs tr(o) to
execute each operator o ∈ P and the costs tm(o) to mate-
rialize the output of each operator o ∈ P . Both cost values
can be derived from cardinality estimates that are calculated
by a cost-based optimizer. Moreover, other parameters that
are needed for the cost estimation are the following cluster
statistics: the mean time between failures (MTBF) and the
mean time to repair (MTTR) for one cluster node. In this
paper, we assume that all these parameters are given by the
function call getCostStats in line 6 of Listing 1.

In the following sections, we present the details for each
of the before mentioned steps (1-4) and explain the pseu-
do code in detail. Table 1 summarizes the most important
terminology used in the remainder of this paper.

3.2 Step 1: Enumerating Fault-tolerant Plans
Our procedure in Listing 1 enumerates potential fault-

tolerant plans [P,MP] for a given query Q using the function
enumFTPlans (line 5 in Listing 1). A naive implementation
of this function would first enumerate all plan and then for
each plan use exhaustive search to explore the 2n variations
n being the number of free operators in P to find the optimal
plan.

The problem complexity of enumerating all join orders in
DAG-structured plans is already NP-hard [14]. Therefore,
we use an approximate algorithm to implement the enume-
ration function enumFTPlans. In the first phase, this func-
tion uses dynamic programming to find the top-k plans (pro-
duced by the last iteration) ordered ascending by their cost
without mid-query failures. In the second phase, function
enumFTPlans then enumerates all potential materializati-
on configurations for these plans. The intuition to analyze
the top-k plans is that a plan P that has slightly higher costs
than a plan P ′ in the first phase, can have lower costs when
including the costs to recover from mid-query failures. For
example, a plan P that has an operator o with low mate-
rialization costs (i.e., tm(o) is small) at a position in a plan
right before a failure is likely to happen (based on the given
MTBF) will “waste” much less time to recover than a plan
P ′ which does not have this property.

However, enumerating all materialization configurations
for the top-k plans can still be very expensive since the
search space for potential materialization configurations is
growing exponentially with the number of free operators in
a plan. Though an interesting observation is, that the top-k
plans might have a lot of paths in common. Based on that
observation we present techniques to prune the search space
in Section 4.

3.3 Step 2: Creating a Collapsed Plan
In its second step, our procedure creates a collapsed plan

P c for the given fault-tolerant plan [P,MP] by calling the
function collapseP lan (line 8 in Listing 1). As mentioned

Listing 1: Find Best Fault-tolerant Plan
1 function findBestFTPlan(Query Q){
2 Plan bestP = null;
3 Mat.Conf. bestM = null;
4 int bestT = MAX_INTEGER;
5 for(each [P,MP] in enumFTPlans(Q)){
6 cost stats = getCostStats(P);
7 int domTPt = 0;
8 Plan P c = collapsePlan(P , MP , stats);
9 for(each path Pt in P c){

10 int TPt = estimateCost(Pt, stats);
11 if(TPt > domTPt) // dominant path
12 domTPt = TPt;
13 }
14 if(domTPt<bestT){ // store if dom. path is shorter
15 bestT = domTPt;
16 bestP = P
17 bestM = MP

18 }
19 }
20 return [bestP, bestM];
21 }

before, the collapsed plan is the basis to estimate the total
cost of a given fault-tolerant plan [P,MP] including the cost
to recover from mid-query failures.

In order to construct the collapsed plan P c from the gi-
ven plan P and the materialization configuration MP , all
operators o ∈ P that are defined by MP to be not mate-
rialized are collapsed into the next consuming operators in
the DAG-structured plan, which materialize their output.
In Figure 3, we show the collapsed plan P c (step 2) for the
given fault-tolerant plan [P,MP] (step 1). To put it different-
ly, a collapsed operator c ∈ P c represents a sub-plan of P
that, once it has materialized its output, does not need to be
re-executed again if a mid-query failure occurs. The set of
operators of P collapsed into one operator c ∈ P c is denoted
by coll(c).

Moreover, for each collapsed operator c ∈ P c, function
collapseP lan also calculates the runtime (without costs for
mid-query failures). The runtime of a collapsed operator c
is defined as t(c) = tr(c) + tm(c) (i.e., runtime costs plus
materialization costs). This runtime is used in step 4 (see
Section 3.5) to estimate the runtime of the collapsed plan
P c under mid-query failures. In the following, we show how
each component is calculated.

The runtime costs tr(c) of a collapsed operator are deter-
mined by the longest execution path in coll(c) called the do-
minant path dom(c) of a collapsed operator c. For example,
in Figure 3 (step 2) the dominant path dom({1, 2, 3}) of the
collapsed operator {1, 2, 3} is represented by the two opera-
tors {2, 3} if tr(2) ≥ tr(1) holds. The runtime costs tr(c) are
thus calculated as shown by Equation 1. For example, the
execution cost of the collapsed operator {1, 2, 3} in Figure
3 (step 2) is tr({1, 2, 3}) = (tr(2) + tr(3)) · CONSTpipe if
tr(2) ≥ tr(1) holds. The constant CONSTpipe with a value
in the interval (0, 1] is used to reflect the effects of pipe-
line parallelism in the sub-plan represented by a collapsed
operator c.3

3Since the constant CONSTpipe strongly depends on the
execution strategy implemented by the PDE and the under-
lying hardware, it must be derived individually by calibra-
tion experiments.

288

tr(c) =

 ∑
o∈dom(c)

tr(o)

 · CONSTpipe (1)

The materialization costs tm(c) of a collapsed operator
c ∈ P c are the materialization costs of the final opera-
tor in the longest path. For example, in Figure 3 (step 2)
tm({1, 2, 3}) = tm(3).

3.4 Step 3: Enumerating Paths
Once the collapsed plan P c is derived from P (as described

before), our procedure enumerates all potential execution
paths Pt ∈ P c and estimates the costs for each path (line
9-13 in Listing 1). An execution path Pt is defined as a
path from a source operator (i.e., operators with no incoming
edges) to a sink operator (i.e., operators with no outgoing
edges) in the collapsed plan P c.

For each enumerated path Pt, we estimate the total run-
time cost TPt using the function call estimateCost (line 9),
which we describe in the next section in detail. From all enu-
merated execution paths the dominant execution path Pt′

is selected. The dominant execution path is the path which
has the maximal estimated runtime cost under mid-query
failures. The intuition is that in a PDE with inter-operator
parallelism the dominant path is a good candidate to repre-
sent the total runtime of the complete collapsed plan P c.

3.5 Step 4: Cost Estimation
In this section, we discuss how we estimate the total runti-

me cost of a given execution path Pt under mid-query failu-
res (line 9 in Listing 1). The cost can be generally split down
into three components: (1) the runtime cost without failures,
(2) the expected runtime that is lost/wasted for each failure
and (3) the number of attempts required to finish a query.
While we already know (1) we focus here on (2) and (3).

Wasted Runtime Cost: If we assume that queries start
at time t0, the runtime wasted because of failure for an ope-
rator in path Pt is a linear function of time t from the start
(t0) until the operator finishes (t0+t(c)). Figure 4 illustrates
it for our running example; the potentially wasted runtime
increases linear with time t until the operator finishes and
the result is successfully materializes, which resets it for the
next operator. Consequently the average wasted runtime for
a failure of an operator c is the likelihood of a failure f at
time t given that the failure happens during the execution
of the operator, times the current execution time (t− t0):

w(c) =

∫ t0+t(c)

t0

(t− t0) · P (ft | ft0<t<t0+t(c)) dt (2)

Here P (ft | ft0<t<t0+t(c)) corresponds to the likelihood
of a failure f at time t given that a failure happens during
the execution of the operator (ft0<t<t0+t(c)). As outlined
earlier we assume exponential arrival time between failures
and that failures are independent, which further allows us
to simplify the average cost for a single machine to:4

4MTBFcost = MTBF · CONSTcost represents the MTBF
transformed into an internal cost value of the PDE.

{4,$5}$

{1,$2,$3}$

{6}$

Execu&on)Path) Wasted)Run&me)

Pointof
Failure$

Wasted:$
Run<me$

t({1,2,3})

t({4,5})

t({6})

t({1,2,3}) t({4,5}) t({6})

Figure 4: Wasted Runtime Cost

w(c) =

∫ t0+t(c)

t0

(t− t0) ·
P (ft)

P (ft0<t<t0+t(c))
dt

=

∫ t0+t(c)

t0

(t− t0) · e
− t

MTBFcost

MTBFcost ·
(
−e−

t0+t(c)
MTBFcost + e

− t0
MTBFcost

) dt

=MTBFcost −
t(c)

e
t(c)

MTBFcost − 1

(3)

First, it should be noted that w(c) does no longer depend
on t0 because of the fact that we have a stationary pro-
cess (i.e., a Poisson process). Secondly, a limit analysis for
MTBFcost →∞ shows that:

w(c)→
1

2
· t(c) (4)

In fact, already for MTBFcost > t(c) the average wasted
time w0 is close to t(c)/2. While potentially surprising, the
reason is simple: the higher the MTBFcost is compared to
the execution time of the operator, the more evenly distri-
buted is the failure rate during the execution, resulting in
an average closer to the middle (t(c)/2) of the execution ti-
me. As our main goal is not a precise failure model, but a
reasonable fast to calculate cost model, we use t(c)/2 as an
approximation of w(c) in the remainder of the paper.

Number of Attempts: Given our estimate for the ave-
rage wasted runtime for a failure of operator c, we now esti-
mate the number of additional attempts we need because of
failures to successfully run the operator.

The likelihood that we have a failure in time-interval t
given the exponential arrival times is F (t) = 1 − e

−t
MTBF

[15, 18]. Accordingly the probability that an operator c ∈ Pt
fails is η(c) = F (t(c)) = 1− e

−t(c)
MTBFcost and that it succeeds

γ(c) = 1− η(c) = e
−t(c)

MTBFcost . As a result the likelihood that
operator c succeeds in N attempts is given as:

S(A ≤ N) = γ(c)︸︷︷︸
A = 0

+ η(c) · γ(c)︸ ︷︷ ︸
A = 1

+...+ ηN · γ(c)︸ ︷︷ ︸
A = N

(5)

Here A corresponds to the number of attempts for ope-
rator c, not counting the first attempt (to not count the
case that we do not have any failures). As it can be no-
ted, S(A ≤ N) is a geometric series. For a given finite N ,
the cumulative probability of success can be presented as
the following closed-form expression: S(A ≤ N) = γ(c) ·
(1− η(c)(N+1))/(1− η(c)) = (1− η(c)(N+1)). Moreover, for
N → ∞ the cumulative probability of success is γ(c)/(1 −

289

c {1, 2, 3} {4, 5} {6} {7}
t(c) 4 3 1 2
w(c) 2 1.5 0.5 1
γ(c) 0.94 0.95 0.98 0.96
a(c) 0.0648 0 0 0
T(c) 4.13 3 1 2

Table 2: Example - Cost Estimation

η(c)) = γ(c)/η(c) = 1 (i.e., at some point every operator
will succeed).

Using the closed-form expression, we now derive the num-
ber of attempts a(c) that operator c needs to achieve a de-

sired probability of success Ŝ (i.e. S(A ≤ N) ≥ Ŝ) as shown
by Equation 6.

a(c) = max

((
ln(1− Ŝ)
ln(η(c))

− 1

)
, 0

)
(6)

In all our experiments in Section 5, we use Ŝ = 0.95 (i.e.,
the 95th percentile) that is often used in literature [18] to
represent the worst case.

Total Runtime: In order to estimate the total runtime
TPt of an execution path Pt under the presence of mid-query
failures, the idea is to sum up the estimated total runtime
T (c) of each operator in path Pt as shown by Equation 7.

TPt =
∑
c∈Pt

T (c) (7)

Based on the given number of attempts a(c) per operator
c ∈ Pt, we can estimate the total runtime T (c) of an operator
c (under node failures) as follows where MTTRcost is the
mean time to repair a failure represented as an internal cost
value:5

T (c) = t(c)︸︷︷︸
(1)

+ a(c) · w(c)︸ ︷︷ ︸
(2)

+ a(c) ·MTTRcost︸ ︷︷ ︸
(3)

(8)

The idea of T (c) is that an operator c needs at least the
time t(c) shown as component (1) in Equation 8 to finish its
execution (i.e., its pure execution time without mid-query
failures). Moreover, the second component (2) represents the
additional wasted runtime up to attempt a(c) which is gi-
ven as a sum of the average wasted runtime cost w(c) of c
and the number of attempts a(c). The last component (3)
of T (c) represents the costs needed to redeploy an opera-
tor (i.e, a(c) ·MTTRcost). Based on T (c), we are now able
to calculate the total estimated cost TPt of path Pt under
failures using Equation 7 and thus determine the dominant
path of a fault-tolerant plan [P,MP].6

5As for MTBFcost, MTTRcost = MTTR · CONSTcost re-
presents the MTTR transformed into an internal cost value
of the PDE.
6It should be noted, that this model is an approximation
and not an exact model, mainly for performance reasons.
For instance, we assume that operations between machines
are not blocking (e.g., one machine can always move ahead
without waiting for another). Hence, we might underesti-
mate the execution time. Furthermore, we do not model the
different paths as stochastic variables, which they ultimately
are. Overall, this leads to faster calculation times, but also
imprecision. However, as our experimental evaluation will
show for many scenarios the estimates are close enough.

Example: In the following we estimate the costs for the
two execution paths Pt1 and Pt2 shown in Figure 3 to cal-
culate TPt1 and TPt2. For this example, we assume that
t(c) for each collapsed operator c is given (as shown in the
following table). Moreover, we use MTBFcost = 60 and
MTTRcost = 0. Based on this information, we can derive
the average wasted time w(c) and the probability of success
using the Equations 4 and 5 as shown in Table 2. Based on
these values and Ŝ = 0.95, we can calculate the number of
attempts a(c) per operator and the total runtime T (c) using
Equations 6 and 8. Consequently, we get TPt1 = 8.13 and
TPt2 = 9.13 for the two paths and thus the dominant path
is Pt2.

4. PRUNING OF SEARCH SPACE
In this section, we discuss pruning rules to reduce the

search space of potential fault-tolerant plans [P,MP]. All
pruning techniques are based on the previously described
cost model.

4.1 Rule 1: High Materialization Costs
The first pruning rule is applied to a DAG-structured exe-

cution plan P that is returned by the first phase of function
enumFTPlans(Q) as described in Section 4.2 (i.e., before
enumerating different materialization configurations).

The intuition of this pruning rule is to mark an operator
o ∈ P as non-materializable if materializing o is guaranteed
to lead to a higher runtime costs under mid-query failures.
When applying this pruning rule, we differentiate two cases:
(1) the operator o is a child of a unary parent operator p and
(2) the operator o is a child of a n-ary parent operator p (i.e.,
p has more than one child operator). In the following, we
explain the pruning rule for these two cases more formally.

In the first case (1), we mark an operator o as non-mat-
erializable (i.e., we set m(o) = 0 and f(o) = 0), if t({o, p}) ≤
t({o}) holds where {o, p} and {o} are collapsed operators.
The runtime for collapsed operators without the additional
costs for mid-query failures is calculated as discussed in Sec-
tion 3.3. In the following we show that if t({o, p}) ≤ t({o})
holds, we can guarantee that the runtime with recovery costs
TP t of an arbitrary path Pt that contains {o, p} will always
be predicted to be less or equal the runtime of the same path
where we replace {o, p} by two separate operators {o} and
{p} (where each output is materialized). Therefore, we mark
such an operator o as non-materializable.

Following the equations in Section 3, if t({o, p}) ≤ t({o})
holds, the wasted runtime w({o, p}) is less or equal the was-
ted runtime w({o}). Moreover, for the same reason the num-
ber of attempts a({o, p}) is also less or equal a({o}) since the
probability of success γ({o, p}) is greater equal than γ({o}).
To that end, the total estimated runtime (including the ad-
ditional costs for mid-query failures) TPt1 of an arbitrary
path Pt1 that contains a collapsed operator {o, p} is less or
equal the total estimated runtime of a variant of Pt1 called
Pt2 where we replace {o, p} by only {o}. Adding operator
{p} to the path Pt2 only increases the total runtime TPt2 .
Thus, TPt1 ≤ TPt2 holds if t({o,p}) ≤ t({o}) holds.

Figure 5 (left hand side) shows an example with two ope-
rators, where the total runtime costs of the collapsed ope-
rator {o, p} is less than the estimated total runtime costs of
the child operator {o}. For calculating the execution costs
tr({o, p}), we use CONSTpipe = 0.8 in this example. Sin-
ce t({o, p}) < t({o}) holds, we mark operator o as non-

290

{p}$

{o}$

Collapse$

tm({o})=10
tr({o})=2
t({o})=12

tm({p})=1
tr({p})=2
t({p})=3

{o,$p}$

tm({o,p})=1
tr({o,p})=
(2+2)·0.8=3.2
t({o,p})=4.2

Unary&Operators& N.ary&Operators&

{p}$

{o1}$ {o2}$
Collapse$ {o1,o2,p}$

tm({o1})=10
tr({o1})=2
t({o1})=12

tm({o2})=5
tr({o2})=4
t({o2})=9

tm({p})=1
tr({p})=2
t({p})=3

tm({o1,o2,p})=1
tr({o1,o2,p})=
(2+4)·0.8=4.8
t({o1,o2,p})=5.8

Figure 5: Rule 1 - High Materialization Costs

materializable and thus exclude operator o from the enu-
meration of materialization configurations.

Case (2) is similar to case (1): In oder to simplify the pre-
sentation, but without loss of generality, we assume that p
has two child operators o1 and o2. In this case, we mark the
two child operators o1 and o2 as non-materializable, if and
only if it is guaranteed that the operator {o1, o2, p}, which
results from collapsing o1, o2 and p, has a total estimated
runtime costs less than o1 and less than o2. This is the case,
if t({o1, o2, p}) ≤ t({o1}) ∧ t({o1, o2, p}) ≤ t({o2}) holds. In
order to proof this pruning rule, we can use the same argu-
ment as before individually for {o1} and {o2}. This proof
can be extended to an arbitrary number of child operators
of p.

Figure 5 (right hand side) shows an example for this ca-
se where the total runtime costs of the collapsed operator
{o1, o2, p} is less than the estimated total runtime costs of
both operators {o1} and {o2}. For calculating the execution
costs tr({o1, o2, p}) we use CONSTpipe = 0.8 in this exam-
ple. Since t({o1, o2, p}) ≤ t({o1}) ∧ t({o1, o2, p}) ≤ t({o2})
holds, we mark operator 1 and 2 as non-materializable and
exclude those operators from the enumeration of materiali-
zation configurations.

4.2 Rule 2: High Probability of Success
The second pruning rule is applied to a DAG-structure

execution plan P enumerated by the first phase of function
enumFTPlans(Q) described in Section (i.e., before enume-
rating different materialization configurations). This rule is
only applied to operators o that are a child of a unary pa-
rent operator p. The idea of this pruning rule is to mark an
operator o as non-materializable if the collapsed operator
{o, p} has a probability of success higher than the desired
probability of success.

More formally, we mark o as non-materializable (i.e., we
set m(o) = 0 and f(o) = 0 for all materialization configura-

tions), if and only if γ({o, p}) ≥ Ŝ whereas Ŝ is the desired
probability of success as discussed in Section 3.5. In that
case, we expect that the collapsed operator finishes without
an additional attempt (i.e., no mid-query failure happens).
Since we save the materialization cost of o when collapsing
o into p, the total runtime for any possible execution path
Pt1 which contains {o, p} is under our model guaranteed
to be less or equal total runtime of a variant of Pt1 cal-
led Pt2 where we replace {o, p} by {o} and {p}. For a high
MTBF (which lead to higher success probabilities), this ru-
le marks operators with even high total execution costs as
non-materializable.

Figure 6 shows an example for this pruning rule. For the
collapsed operator {o, p} we get a probability of success
γ({o, p}) = 0.999 when applying the cost equation in Sec-
tion 3 using a mean-time-between-failures of MTBFcost =
3600. Since this probability is higher than our Ŝ = 0.95, we

{p}$

{o}$

Collapse$ {o,p}$

tm({o,p})=0.15
tr({o,p})=0.7
t({o,p})=0.85

tm({o})=1
tr({o})=0.5
t({o})=1.5

tm({p})=0.15
tr({p})=0.2
t({p})=0.35

Figure 6: Rule 2 - Short-Running Operators

mark operator o ∈ P as non-materializable and thus exclude
operator o from the enumeration of materialization configu-
rations in our cost model.

4.3 Rule 3: Long Execution Paths
The last pruning rule is applied during the enumeration

of execution paths for a given fault-tolerant plan [P,MP]
to stop the path enumeration early without analyzing all
execution path (i.e., the pruning can be applied after line
9 in Listing 1). The idea of this rule is that we stop the
path enumeration early, if we find an execution path Pt,
which has a runtime that is longer than the best memoized
dominant path of all previously enumerated fault-tolerant
plans for a given query Q.

More formally, if the analyzed path Pt of the current
fault-tolerant plan has guaranteed higher total execution
cost than the best memoized dominant path of a previous-
ly analyzed fault-tolerant plan (i.e., if TPt ≥ bestT holds),
then we do not need to analyze any other execution path
of the the current fault-tolerant plan. Consequently, in this
case, we can stop the path enumeration for the current fault-
tolerant plan early and continue with the next fault-tolerant
plan without analyzing all paths.

In order to find out that if we can stop the path enume-
ration, we analyze if one of the following conditions holds:
(1) RPt ≥ bestT : If for the runtime RPt of path Pt without
any failure, RPt ≥ bestT holds, we can skip all remaining
paths for the given fault-tolerant plan [P,MP]. The reason
is that the dominant path (called Pt′ further on) has a run-
time TPt′ under mid-query failures that is greater equal the
runtime TPt of the current path Pt. Thus, since TPt′ ≥ TPt,
TPt ≥ RPt and RPt ≥ bestT holds, we can conclude that
TPt′ ≥ bestT holds as well. Moreover, since the runtime
of a path without mid-query failures can be computed as
RPt =

∑
c∈Pt t(c), we can calculate RPt easily without cal-

ling the estimateCosts function (in line 9 in Listing 1). (2)
TPt ≥ bestT : If for any path TPt ≥ bestT holds, we can skip
all remaining paths for the given fault-tolerant plan [P,MP]
since then the dominant path (called Pt′) of the the given
fault-tolerant plan [P,MP] will have a runtime TPt′ under
mid-query failures that is guaranteed to be greater equal
bestT . Thus, since TPt′ ≥ TPt and TPt ≥ bestT holds, we
can conclude that TPt′ ≥ bestT holds as well. Compared to
the rule before, however, we have to call the estimateCosts
function to compute TPt.

Additionally, instead of memoizing only one best domi-
nant path and its runtime bestT , we could memoize multi-
ple best dominant paths with different numbers of collapsed
operators for pruning even more aggressively. These memoi-
zed dominant paths can then be used to check for a given
execution path Pt, if we find a memoized dominant path
Ptm with the same number of collapsed operators where
the following equation holds:

291

Memoized&Dominant&Paths& Analyzed&Path&

c2$

c1$t(c1)=5

t(c3)=1

c2$

c1$t(c1)=4

t(c2)=4

c3$

t(c2)=3 c2$

c1$t(c1)=4

t(c3)=1 c3$

t(c2)=4

Path$Ptm1$ Path$Ptm2$ PathPt

Figure 7: Rule 3 - Memoizing best Dominant Paths

∀(i ∈ {0...|Pt|}) : sort(Pt).getT (i) ≥ sort(Ptm.getT (i)) (9)

This means, we sort the operators in the paths Ptm and
Pt descending by their total execution costs (using function
sortTDesc) and pairwise compare the total costs of the ope-
rators with the same index i in both sorted lists. If the con-
dition in Equation 9 holds, we can derive that TPt ≥ TPtm .
If the condition holds, we say Pt ≥ Ptm for short. The ratio-
nale why this holds is that the average wasted runtime w(c)
as well as the number of attempts a(c) will be greater than
or equal for each operator c in path Pt compared to path
Ptm and thus TPt will also be greater than or equal TPtm .
Moreover, we also can compare path Pt to any memoized
dominant path Ptm with a smaller number of collapsed ope-
rators, since we always can add further collapsed operators
with total costs t({o}) = 0 to Ptm .

Figure 7 shows an example for this pruning rule. The left
hand-side shows two memoized dominant paths: Ptm1 is the
best dominant path with three collapsed operators (c′1 to
c′3) and Ptm2 is the best dominant path with two collapsed
operators (c′′1 and c′′2) that are already sorted descending
by runtime to simplify the presentation. For the given path
Pt with three collapsed operators (c1 to c3), we see that
Pt ≥ Ptm1 does not hold but Pt ≥ Ptm2 holds. Thus, we
can skip the enumeration of the remaining paths of the given
fault-tolerant plan [P,MP].

Finally, since multiple equivalent DAG-structured physi-
cal execution plans are enumerated for the same query (as
described in Section 3) in cost-based enumeration, this rule
will lead to an even better reduction of the search space if
we store bestT as well as the memoized best dominant paths
for the complete enumeration process of all equivalent exe-
cution plans for a given query. In our experiments in Section
5, we analyze the efficiency of this pruning rule when it is
applied to all equivalent execution plans for a given query.

5. EXPERIMENTAL EVALUATION
The goal of the experimental evaluation is to show: (1) the

efficiency of our scheme compared to existing fault-toleran-
ce schemes for different types of queries and different failure
rates (see Section 5.2 and Section 5.3), (2) the accuracy of
our cost-based fault-tolerance scheme and its robustness (see
Section 5.4), and (3) the effectiveness of our pruning techni-
ques to reduce the search space of potential materialization
configurations (see Section 5.5).

5.1 Setup and Workload
Cluster Setup: For our experiments, we used a cluster

of 10 commodity machines each having 2 CPUs (Intel Xeon

E5345, 2.33GHz, 4 cores), 8 GB RAM, and two local SCSI
hard disks (10, 000rpm) each with 73.4 GB storage capaci-
ty. As fault-tolerant storage medium, we used an external
iSCSI storage with 12 disks (5, 400rpm) each having 4 TB
storage capacity attached via 1 GB Ethernet. Each cluster
node was running the following software stack: openSUSE
13.1, MySQL 5.6.16, and Java 8.

Workload: Moreover, for the workload in our experi-
ments, we used the TPC-H benchmark schema and data.
We replicated the two small tables NATION and REGION to
all cluster nodes. All other tables were horizontally parti-
tioned into 10 partitions and distributed to different nodes
(i.e., one partition per node). We co-partitioned the two ta-
bles LINEITEM and ORDERS using HASH-partitioning on the
orderkey attribute. For all other tables, we used the RREF-
partitioning [8] that partially replicates individual tuples
in order to minimize distributed joins as follows: CUSTOMER
RREF by ORDERS (on custkey), PARTSUPP RREF by LINEITEM

(on suppkey and partkey), as well as SUPPLIER RREF by
PARTSUPP (on suppkey).

Implementation: For actually running queries in paral-
lel, we implemented our cost-based fault-tolerance scheme as
well as the other existing fault-tolerance schemes in the open
source PDE called XDB [8], which provides DAG-structured
execution plans.XDB is implemented as a middleware that
executes queries over sharded single-node MySQL database
instances. The middleware provides the fault-tolerant que-
ry optimizer, which determines the subset of intermediates
that will be materialized during execution. For execution,
the query coordinator splits the execution plan according to
the materialization configuration into sub-plans over diffe-
rent partitions, which are then executed on the correspon-
ding cluster nodes. Sub-plans where configured to store their
output to the external iSCSI storage. In order to achieve
fault-tolerance with regard to mid-query failures, a query
coordinator monitors the execution of individual sub-plans
and restarts them once a failure is detected.

Statistics: In order to show the effect of different fai-
lure rates, we injected failures using different MTBFs that
we also use as input to our fault-tolerant query optimizer.
In all experiments, we used a monitoring interval to 2s in
XDB . Thus, in average a failed operator was redeployed in
1s and we therefore use MTTR=1s in all experiments. Mo-
reover, we also use perfect cost estimates for tr(o) and tm(o)
for our experiments in Section 5.2 and Section 5.3. In order
to derive perfect query statistics, we executed all queries
in XDB (w/o injecting failures) and measured tr(o) and
tm(o) for each operator o. Additionally, in order to show
the effects of non-exact estimates in Section 5.4, we intro-
duced errors in these statistics. Finally, as constants, we use
CONSTcost = 1 since the estimates represent the real time
as well as CONSTpipe = 1 that we derived using a calibra-
tion experiment in XDB .

5.2 Efficiency for Different Queries
In this experiment we compare the overhead of different

existing fault-tolerance schemes to our cost-based scheme
when mid-query failures happen while executing queries over
a partitioned TPC-H database of SF = 100. The reported
overhead in this experiment represents the ratio of the run-
time of a query under a given fault-tolerance scheme (i.e.,

292

including the additional materialization costs and recovery
costs) over the baseline execution time. The baseline execu-
tion time for all schemes is the pure query runtime without
additional costs (i.e., no extra materialization costs and no
recovery costs due to mid-query failures). Thus, if we report
that a scheme has 50% overhead, it means that the query
execution under mid-query failures using that scheme took
50% more time than the baseline. The fault-tolerance sche-
mes, which we compare in this experiment, are:

• all-mat: This represents the strategy of Hadoop, whe-
re all intermediates are materialized. Moreover, for re-
covering a fine-grained strategy is used (i.e., only sub-
plans that fail are restarted).
• no-mat (lineage): This represents the strategy of

Shark, where lineage information is used to re-compute
failed sub-plans. Moreover, for recovering a fine-grained
strategy is used.
• no-mat (restart): This represents the (coarse-grained)

strategy of a parallel database, where the complete
query plan is restarted once a sub-plan fails.
• cost-based: This represents our strategy that mate-

rializes intermediates based on a cost model. Moreover,
for recovering a fine-grained strategy is used.

We compare the overhead of these schemes for different
TPC-H queries with varying complexity: Q1 (no join), Q3
(3-way join) and Q5 (6-way join). Moreover, we run two com-
plex queries: a variant of Q1(called Q1C) and a variant of Q2
(called Q2C). Q1C is a nested query that uses Q1 as inner
query and joins the result with the LINEITEM table to count
the individual items with a given status that have a price
above the calculated average. Thus, Q1C is a query that
has an aggregation operator in the middle of the plan. Q2C
modifies Q2 (which is already nested) such that the inner
aggregation query (4-way join) is used as a common-table-
expression (CTE) which is consumed by two outer queries.
For the two outer queries, we used the original outer que-
ry (5-way join) with different filter predicates on the PART

table. This query represents a DAG-structured plan.
Moreover, for injecting failures, we use the following two

settings per query: (1) an MTBF per node which is 10%
higher than the baseline runtime of each query to simulate
high failure rates, and (2) an MTBF per node which is 10×
the baseline runtime to simulate low failure rates. For mea-
suring the actual runtime, we created 10 failure traces for
each unique MTBF using an exponential distribution where
λ = 1/MTBF and used the same set of traces for injecting
failures to compare the overhead of different fault-tolerance
schemes. We used this method in all experiments.

 0

 200

 400

 600

 800

 1000

Q1 Q3 Q5 Q1C Q2C

O
ve

rh
e
a
d
 (

in
 %

)

all-mat

2
7

6

1
7

4

1
5

4

3
5

2

5
2

3

no-mat (lineage)

2
7

2

3
4

9

2
8

7

3
8

6

3
7

8

no-mat (restart)

A
b

o
rt

e
d

A
b

o
rt

e
d

A
b

o
rt

e
d

A
b

o
rt

e
d

A
b

o
rt

e
d

cost-based

2
7

2

1
5

1

1
3

8

1
6

6 2
1

5

(a) Low MTBF

 0

 50

 100

 150

 200

 250

 300

 350

 400

Q1 Q3 Q5 Q1C Q2C

O
ve

rh
e
a
d
 (

in
 %

)

all-mat

6
1

2
5 4

1

8
5

1
4

3

no-mat (lineage)

6
2

1
1 2

6 3
3

5
5

no-mat (restart)

7
7

1
3 3

0 4
6

1
0

4

cost-based

6
2

1
1 2

6

2
3

4
6

(b) High MTBF

Figure 8: Varying Queries

The result of this experiment is shown in Figure 8. The
cost-based model always selects the sweet spots for

materialization for different queries and different failure
rates. Thus, the cost-based scheme has the least or compa-
rable overhead as the best existing fault-tolerance scheme.
Query Q1 is an exception in this experiment since it has no
free operator that can be selected for materialization. Thus,
all schemes show almost the same overhead except for no-
mat (restart).

Low MTBF: For all queries (except Q1), the not-mat
(lineage) scheme has a higher overhead than the cost-based
scheme. Moreover, the no-mat (restart) scheme does not fi-
nish any query (i.e., we aborted them after 100 restarts).
Another interesting pattern is that both star-join queries
(Q3 and Q5) have a similar overhead for the cost-based and
the all-mat scheme. The reason is that the cost-based sche-
me materializes most intermediate results (except the most
expensive ones) and therefore the resulting overhead is simi-
lar to the all-mat scheme. For more complex queries (Q1C
and Q2C), the cost-based scheme, has clearly the best over-
head. The reason is that these queries contain an aggregation
operator in the middle of the plan, which has low materia-
lization costs. This aggregation operator is selected by the
cost-based scheme as a checkpoint that efficiently minimizes
the overhead under mid-query failures. Moreover, for Q1C
and Q2C, the all-mat scheme has a much higher overhead
compared to the cost-based scheme. The reason is that the
total materialization costs for many operators are relatively
high and the cost-based scheme thus does not materialize
these operators.

High MTBF: For low failure rates the results are diffe-
rent. The no-mat (lineage) scheme and the cost-based sche-
me are the best schemes for Q3 and Q5. The reason is that
the cost-based scheme only materializes few small interme-
diates and thus is similar to the no-mat (lineage) scheme.
For Q1C and Q2C, the no-mat (lineage) scheme is slightly
worse since the cost-based scheme materializes the small ag-
gregation operator in the middle of the plan and has thus a
lower overhead if a failure occurs. The no-mat (restart) sche-
me also tends to have a slightly higher overhead than the
cost-based scheme since it is a coarse-grained scheme. Inte-
restingly, the all-mat scheme also has only a slightly higher
overhead than the cost-based scheme for Q3 and Q5. The
rationale is that these queries have moderate total materia-
lization costs (approx. 20− 30% of the runtime costs) under
all-mat. Q1C and Q2C, however, have much higher materia-
lization costs (approx. 60 − 100% of the runtime costs) for
the all-mat scheme leading to a much higher overhead.

5.3 Efficiency for Varying Statistics
In this experiment, we compare the overhead of the dif-

ferent fault-tolerance strategies (a) when running the same
query with varying runtime for a fixed MTBF to show the
effect of short- and long-running queries and (b) when run-
ning the same query under MTBFs to show the effect of
different cluster setups.

Exp. 2a - Varying Query Runtime (Figure 10): In
this experiment, we executed TPC-H query 5 over different
scaling factors ranging from SF = 1 to SF = 1000. This
resulted in query execution times ranging from a few se-
conds up to multiple hours. We selected TPC-H query 5 in
this experiment since this is a typical analytical query with
multiple join operations and an aggregation operator on top
(see Figure 9). For this experiment, the output of every join

293

σ(R)% ⨝%

N%

⨝%

C%

⨝%

σ(O)%

⨝%

L%

⨝%

S%

!%
1% 2% 3% 4% 5%

Figure 9: TPC-H Query 5 (Free operators 1-5)

operator was defined to be a free operator (marked with the
numbers 1-5 in Figure 9) and thus could be selected by our
cost model to be materialized. Thus, for each enumerated
plan, our procedure in Section 3 enumerated 25 materializa-
tion configurations when pruning was deactivated. Moreo-
ver, we injected mid-query failures using a MTBF of 1 day
(1440 minutes) per node.

The result of this experiment is shown in Figure 10. The
x-axis shows the baseline-runtime of the query (i.e., when no
failure is happening) and the y-axis shows the overhead un-
der mid-query failures. The cost-based scheme has the
lowest overhead for all queries; starting with 0% for
short-running queries and ending with 247% for long-running
queries. Compared to our cost-based scheme, the other sche-
mes impose a higher or comparable overhead depending on
the query runtime. Both no-mat schemes also start with
0% overhead for short-running queries. However, for queries
with a higher runtime, the overhead increases. As expected,
for the restart-based no-mat scheme, queries with a high run-
time tend to not finish since the complete query is restarted
over and over. The lineage-based not-mat scheme degrades
a more gracefully. However, it still has the second highest
overhead since sub-plans need to be restarted from scratch.
The all-mat scheme behaves very similar to the cost-based
scheme for short- and long-running queries. The reason is,
that the total materialization costs of all operators (1-5 in
Figure 9) represent only 34.13% of the total runtime costs.
For long-running queries, the cost-base scheme materializes
the intermediates 2 and 3. As a result, the cost-mat sche-
me has 63% less overhead than the all-mat scheme resulting
from lower materialization costs and less attempts to finish
the query under mid-query failures. For short running que-
ries the overhead of all-mat is exactly 34% higher since the
cost-based scheme does not materialize any intermediate.

 0

 100

 200

 300

 400

 500

 600

 700

 10 100 1000

O
ve

rh
e
a
d
 (

in
 %

)

Runtime wo Failure (in min)

all-mat
no-mat (lineage)
no-mat (restart)

cost-based

Figure 10: Varying Runtime

Exp. 2b - Varying MTBF (Figure 11): This expe-
riment shows the overhead of the fault-tolerance schemes
mentioned before when varying the MTBF. In this experi-
ment, we executed TPC-H query 5 over SF = 100 using
a low selectivity. This resulted in a query execution time of
905.33s (i.e., approx. 15 minutes) as a baseline-runtime when
injecting no failures and adding no additional materializati-

ons in the plan. In order show the overhead, we executed the
same query using the following MTBFs per node: 1 week, 1
day, and 1 hour.

 0

 100

 200

 300

 400

 500

 600

all-m
at

no-m
at (lineage)

no-m
at (restart)

cost-m
at

O
ve

rh
e

a
d

 (
in

 %
)

Cluster A (10 nodes, MTBF=1 week)

3
4

.1
3

0 0 0

Cluster B (10 nodes, MTBF=1 day)

4
0

.9
3

2
9

.3
4

5
7

.7
4

2
9

.3
0

Cluster C (10 nodes, MTBF=1 hour)

7
3

.8
3

8
4

.6
6

2
3

1
.8

0

5
2

.1
2

Figure 11: Varying MTBF

Figure 11 shows the overhead of the individual schemes
under varying MTBFs. This figure shows the same trends
as already reported before in Figure 10. The cost-based
scheme has the lowest overhead for all MTBFs when
compared to the other schemes using the same MTBF. Both
not-mat schemes show a higher increase of the overhead un-
der high failure rates (i.e., a low MTBF). The all-mat scheme
again imposes unnecessary overhead for low failure rates and
is the second best for high failure rates since the materiali-
zation overhead for all operators of Q5 is only 30% of the
query runtime.

5.4 Accuracy and Robustness of Cost Model
In this experiment we show the accuracy and robustness

of our cost model: (a) For showing the accuracy of our cost
model, we compare the actual runtime with the estimated
runtime for different fault-tolerant plans (enumerated by our
cost-based scheme) and for different MTBFs. (b) For sho-
wing the robustness of our cost model, we introduce errors
in the statistics and analyze the effects on the plan selection.

Exp. 3a - Accuracy of Cost Model (Figure 12): In
this experiment, we executed TPC-H query 5 over SF = 100
using a low selectivity. This resulted in a query execution ti-
me of 905.33s (i.e., approx. 15 minutes) as a baseline-runtime
when injecting no failures and adding no additional mate-
rializations in the plan. In order to cover a wide range of
MTBFs, we added extreme MTBFs to cover a wide range
from 30 minutes to 1 month (different from Experiment 1b
in Section 5.4).

Figure 12(a) shows the accuracy results (i.e., actual vs.
estimated runtime) for different MTBFs. While for high
MTBFs (i.e., low failure rates) the error is 0%, we get an er-
ror of 30% for low MTBFs. In general the cost model tends
to underestimate the runtime when injecting failures. Ho-
wever, with an increasing estimated runtime, we see also an
increase in the actual runtime. This behavior is crucial for
a good cost model to select plans with a minimal actual
runtime.

Figure 12(b) shows the accuracy when enumerating diffe-
rent 25 materialization configurations for the plan of TPC-H
query 5 shown in Figure 9 for a fixed MTBF of 1 hour. The
x-axis shows the 25 enumerated materialization configurati-
ons sorted ascending by their estimated runtime. The y-axis
shows the estimated/actual runtime for each of the enumera-
ted plans. The plot shows, that there is a high correlation
of the estimated and actual runtime for all enumera-

294

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

M
TBF=1 m

onth

M
TBF=1 w

eek

M
TBF=1 day

M
TBF=1 hour

M
TBF=30 m

in

R
u

n
tim

e
 w

 F
a

ilu
re

 (
in

 s
)

Actual
Estimated

(a) Varying MTBF

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

1 5 10 12 (all-m
at)

15 20 25 (no-m
at)

30 32

R
u

n
tim

e
 w

 F
a

ilu
re

 (
in

 s
)

Enumerated Materialization Configurations

Actual
Estimated

(b) Varying Mat. Confs.

Figure 12: Accuracy of Cost Model

ted materialization configurations which validates our cost
model (i.e., a plan which has lower estimated cost has al-
so lower actual cost). As discussed before, this behavior is
crucial for a good cost model to select plans with a minimal
actual runtime.

Exp. 3b - Robustness of Cost Model (Table 3): In
this experiment, we evaluate the sensitivity of our cost model
to inaccurate statistics. We again use the plan of TPC-H
query 5 as shown in Figure 9. The reason is that the runtime
of this plan under mid-query failures strongly depends on
the materialization configuration chosen by our cost-based
scheme. As shown before in Figure 12(b), the runtime varies
for all enumerated materialization configurations from 1358s
to 2517s (for SF = 100 and an MTBF of 1 hour). To evaluate
the sensitivity of our scheme, we vary the input statistics of
our cost model and report how these changes affect the top-
5 plans. When changing the I/O costs, we multiplied the
materialization costs (tm(o)) of each operator with a given
perturbation factor, before applying our cost model. When
changing all costs, we multiplied the all operator costs (tr(o)
and tm(o)) with a given perturbation factor, before applying
our cost model.

The baseline is the ranking of materialization configurati-
ons shown in Figure 12(b) that represents the case with ex-
act statistics. Table 3 shows the results of this experiment.
Each line in this table shows which materialization configu-
ration of the baseline ranking moved to the top-5 positions
when perturbing the statistics (i.e., the higher the number,
the worse is the selected plan). In general, perturbations
with small factors (i.e., 0.5× and 2×) often change the
order within the top-5 materialization configurati-
ons only slightly. This shows that our cost-based sche-
me is robust towards typical perturbations. In this case,
our cost-based approach does not select the most optimal
fault-tolerant plan but it selects a fault-tolerant plan that
is close to the optimal plan in terms of its runtime under
mid-query failures as shown in Figure 12(b). However, for
extreme perturbations (i.e., 0.1× and 10×) our cost model
is more sensitive. In the worst case, a materialization con-

Ranking w exact statistics 1 2 3 4 5

MTBF ×0.1 3 4 1 2 5
MTBF ×0.5 3 4 1 2 5
MTBF ×2 8 7 5 6 2
MTBF ×10 28 27 25 26 18

I/O costs ×0.1 11 12 9 10 13
I/O costs ×0.5 3 1 2 4 11
I/O costs ×2 5 7 6 8 2
I/O costs ×10 27 25 28 26 17

Compute & I/O costs ×0.1 28 27 25 26 8
Compute & I/O costs ×0.5 7 8 5 6 2
Compute & I/O costs ×2 3 4 1 2 5
Compute & I/O costs ×10 3 4 1 2 5

Table 3: Robustness of Cost Model

figuration which was on position 28 in the baseline ranking
(out of 32) is placed on rank 1 after perturbation, resulting
in a materialization configuration which has a 1.7× higher
runtime compared to the optimal materialization configura-
tion. Moreover, perturbations in the I/O costs have a much
stronger effect as perturbations of the other two categories.
This is also clear, since our cost-based scheme then favors
configurations with less materializations when compared to
the perfect ranking.

5.5 Effectiveness of Pruning Rules
In our final experiment, we show the effectiveness of our

pruning rules presented in Section 4. Therefore, we enume-
rate all 1344 equivalent join orders of TPC-H query 5 (i.e.,
we do not enumerate plans with cartesian products) and ap-
ply our cost model with and without pruning rules enabled
for SF = 10 and three different cluster setups with varying
MTBFs: 1 week, 1 day, and 1 hour. We analyze the pruning
efficiency for different cluster setups since the pruning rules
2 and 3 depend on the given MTBF.

Figure 13 shows the percentage of fault-tolerant plans that
are pruned by the individual rules and the overall percentage
of pruned fault-tolerant plans accumulated for all pruning
rules 1-3. If we do not apply any pruning rule (no pruning),
then 25 different materialization configurations need to be
analyzed for each enumerated execution plan since TPC-H
query has 5 free operators. Thus, without pruning 43, 008
fault-tolerant plans must be enumerated when no pruning is
activated. When activating all pruning rules, in the best
case 36% of the fault-tolerant plans can be pruned
for a MTBF of 1 week whereas in the worst case 26% can be
pruned for a MTBF of 1 hour. In the following, we report
the results when activating the pruning rules one after each
other and explain the decreased effectiveness of the pruning
rules for lower MTBFs.

The first rule (i.e., rule 1 in Section 4) is the most efficient
rule and prunes constantly (i.e., independent of the MTBF)
25% of all fault-tolerant plans. The reason is that some of
the join operators in TPC-H query 5 have a quite large inter-
mediate result (e.g., when joining LINEITEM and SUPPLIER).
Thus, materializing the output of those joins is more ex-
pensive than running the subsequent operator, which means
that we can set these join operators with large intermediate
results to be not materialized.

The second rule (i.e., rule 2 in Section 4) is less efficient
than rule 1 and prunes only 0.74%−7.15% depending on the
given MTBF. First, this rule generally prunes less materia-
lization configurations since only the very last operators of
a query tree (i.e., aggregation and projection) are typically
short running and thus can be set to be not materialized.

295

 0

 20

 40

 60

 80

 100

R
ule 1

R
ule 2

R
ule 3

All R
ules

P
ru

n
in

g
 (

in
 %

)

Cluster A (10 nodes, MTBF=1 week)
Cluster B (10 nodes, MTBF=1 day)

Cluster C (10 nodes, MTBF=1 hour)

Figure 13: Effectiveness of Pruning

Moreover, for a higher MTBF, the probability of success of
an operator increases even for longer running operators. In
that case, more operator can be pruned (i.e., they are set to
be not-materialized).

Compared to rule 1 and 2, rule 3 actually does not pru-
ne fault-tolerant plans eagerly before they are enumerated
but it prunes them lazily during the enumeration of execu-
tion paths. More precisely, it prunes a fault-tolerant plan,
once t finds an execution path Pt which has a total runti-
me TPt longer than the best dominant path found so far.
Thus, the efficiency of this pruning rule depends strongly
on the enumeration order of execution paths. In this expe-
riment, we count those fault-tolerant plans where this rule
can be applied at all and at the end regard only the half of
the fault-tolerant plan as being pruned. The reason why we
only count only the half of the fault-tolerant plans is, that
pruning has two extreme cases: (1) the rule can be already
applied for the first enumerated execution path (i.e., we skip
all other execution paths of the same fault-tolerant plan), or
(2) the rule is applied only for the very last enumerated exe-
cution path (i.e., we do not skip any other execution path
of the same fault-tolerant plan). Thus, in average half of the
costs for analyzing the paths can be avoided by this rule.

Figure 13 shows that the pruning efficiency of rule 3 is al-
so increasing for higher MTBF. The reason is that the best
dominant path has a lower total runtime bestT for an incre-
asing MTBF. Thus, the pruning condition 1 of rule 3 (see
Section 4.3), which compares the runtime RPt of a path Pt
without mid-query failures to the memoized best dominant
path, holds more often.

6. RELATED WORK
Parallel databases [4, 2, 6, 5] typically can handle various

types of failures. One of the main issues discussed in the lite-
rature is to maintain consistency in transactional workloads
despite failures [15]. Moreover, another well studied field in
parallel databases is how to achieve high-availability of the
database by replicating partitions to multiple nodes in a
cluster [11]. When introducing replication in transactional
workloads, modern parallel databases often relax consisten-
cy (e.g. by using eventual consistency) in favor of better
supporting availability or network partitioning [9] in order
to being able to scale in large clusters. However, to the best
of our knowledge there is no published work on how parallel
databases handle mid-query failures in analytical workloads.
The main approach in most parallel databases is to restart a
query once a mid-query failure happens. However, this sche-
me is not efficient when running on large clusters of com-
modity machines or IaaS offerings such as Amazon’s Spot
Instances where a mid-query failure is a much more com-
mon case. This requires a more fine-granular fault-tolerance
scheme, which checkpoints intermediate results.

Fine-granular fault-tolerance scheme are typically found
in modern PDEs (such as Hadoop [1], Shark[22], Dryad [13])
as well as in many stream processing engines [12, 17]. Whi-
le stream processing engines checkpoint the internal state of
each operator for recovering continuous queries, MapReduce-
based systems [10] such as Hadoop [1] typically materialize
the output of each operator to handle mid-query failures. For
being able to recover, they rely on the fact that the inter-
mediate result is persistent even when a node in the cluster
fails, which requires expensive replication and prevents sup-
port for latency-sensitive queries. Other systems, like Impala
[3] and Shark [22] store their intermediates in main-memory
in order to better support short running latency-sensitive
queries. Moreover, Shark uses the idea of resilient distribu-
ted datasets [24], which store their lineage in order to enable
re-computation instead of replicating intermediates. In con-
trast, in Dryad [13] operators can be configured to either
pipeline their output to the next operator(s) or materialize
the intermediate results. However, in Dryad this must be
configured manually; i.e., there is no optimizer that decides
which results should be materialized and which should be
pipelined for an efficient execution under failures.

Two more recent approaches, which tackle the same pro-
blem as discussed in this paper are FTOps [19] and Osprey
[23]. FTOps also presents an optimizer to find the best fault-
tolerance strategy for each operator of a given plan. Howe-
ver, compared to our approach, FTOps only supports tree-
structured plans and not DAG-structured plans. Another
difference is that FTOps only supports plans with aggrega-
tions at the top, while we support arbitrary positions of ag-
gregation operators in the plan. Moreover, FTOps runs as
a post-processing step and uses a brute-force enumeration
technique to analyze different fault-tolerance strategies for
input plan while our approach analyses the top-k plans and
efficiently prunes the search space of different fault-tolerant
plans. Compared to FTOps, Osprey applies MapReduce-
style fault- tolerance to parallel databases: Osprey splits
analytical queries over a star schema into multiple sub-queries
over individual partitions and executes a final merge of all
sub-queries. If a sub-query fails it is re-started on a different
replica. However, Osprey does not provide a cost-based op-
timizer to select an optimal fault-tolerant plan that includes
additional materializations.

7. CONCLUSIONS AND OUTLOOK
In this paper, we presented our novel cost-based fault-to-

lerance scheme for parallel data processing. Compared to the
existing strategies which either materialize all intermediates
or no intermediates, our scheme selects an optimal subset of
intermediates to be materialized such that the query runtime
is minimized under the presence of mid-query failures. Our
experiments show, that our scheme is efficient for different
queries as well different cluster setups whereas the existing
schemes only have their sweet-spot for certain cluster setups
and query workloads.

One main avenue of future work, is to integrate other
fault-tolerance strategies (e.g., check-pointing of the opera-
tor state to also support mid-operator failures) into our cost-
based fault-tolerance scheme. This could be helpful especi-
ally for long running operators which otherwise are likely to
fail often. Moreover, we also want to look into more dynamic
decision for cases where data is skewed or statistics are hard
to estimate (e.g., for user-defined functions).

296

8. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org/.

[2] HP Vertica Database. http://www.vertica.com/.

[3] Impala.
http://www.cloudera.com/content/cloudera/en/

products-and-services/cdh/impala.html.

[4] Pivotal Greenplum Database. http://www.gopivotal.
com/big-data/pivotal-greenplum-database.

[5] SAP HANA Database. www.sap.com/HANA.

[6] Teradata Database. http://www.teradata.com/.

[7] C. Binnig, N. May, and T. Mindnich. SQLScript:
Efficiently Analyzing Big Enterprise Data in SAP
HANA. In BTW, pages 363–382, 2013.

[8] C. Binnig, A. Salama, A. C. Müller, E. Zamanian,
H. Kornmayer, and S. Lising. XDB: a novel database
architecture for data analytics as a service. In IEEE
Big Data, 2014.

[9] E. A. Brewer. Towards robust distributed systems. In
PODC, page 7, 2000.

[10] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[11] H.-I. Hsiao and D. J. DeWitt. A Performance Study of
Three High Available Data Replication Strategies.
Distributed and Parallel Databases, 1(1):53–80, 1993.

[12] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel,
M. Stonebraker, and S. B. Zdonik. High-Availability
Algorithms for Distributed Stream Processing. In
ICDE, pages 779–790, 2005.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys, pages 59–72,
2007.

[14] G. Moerkotte. Building Query Compilers. University
of Mannheim, http://pi3.informatik.
uni-mannheim.de/~moer/querycompiler.pdf, 2014.

[15] M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems, Third Edition. Springer, 2011.

[16] K. Ren, Y. Kwon, M. Balazinska, and B. Howe.
Hadoop’s Adolescence. PVLDB, 6(10):853–864, 2013.

[17] N. Tatbul, Y. Ahmad, U. Çetintemel, J.-H. Hwang,
Y. Xing, and S. B. Zdonik. Load Management and
High Availability in the Borealis Distributed Stream
Processing Engine. In GSN, pages 66–85, 2006.

[18] P. Tobias and D. Trindade. Applied Reliability, Third
Edition. Taylor & Francis, 2011.

[19] P. Upadhyaya, Y. Kwon, and M. Balazinska. A latency
and fault-tolerance optimizer for online parallel query
plans. In SIGMOD Conference, pages 241–252, 2011.

[20] F. M. Waas. Beyond Conventional Data Warehousing
- Massively Parallel Data Processing with Greenplum
Database. In BIRTE (Informal Proceedings), 2008.

[21] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 1st edition, 2009.

[22] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: SQL and rich
analytics at scale. In SIGMOD Conference, pages
13–24, 2013.

[23] C. Yang, C. Yen, C. Tan, and S. Madden. Osprey:
Implementing MapReduce-style fault tolerance in a
shared-nothing distributed database. In ICDE, pages
657–668, 2010.

[24] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
NSDI, pages 15–28, 2012.

[25] J. Zhou, N. Bruno, M.-C. Wu, P.-Å. Larson,
R. Chaiken, and D. Shakib. SCOPE: parallel
databases meet MapReduce. VLDB J., 21(5), 2012.

297

