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1. INTRODUCTION
Motivation: Existing distributed data management sys-

tems typically assume that the network is a major bottlen-
eck [10]. Consequently, avoiding remote data transfers is an
important design aspect of existing systems. In extreme ca-
ses, this has lead to system designs, which explicitly do not
support certain distributed operations (e.g., BigTable only
supports joins if the inner table contains less than 8 MB of
data). A common design principle, however, is to minimize
remote data transfer by the two following techniques: First,
existing systems try to find an optimal partitioning scheme
to co-partition data in order to avoid remote data transfers
for operations such as joins or to avoid distributed tran-
sactions. Second, locality-aware scheduling strategies aim to
increase data-locality by shipping computation to the nodes
where the data is stored. However, these techniques still re-
sult in major limitations: (1) For complex data models (e.g.
graphical models) as well as complex operations expressed
as user-defined functions (e.g., machine-learning tasks), par-
titioning the data optimally is not straightforward. (2) Exis-
ting partitioning schemes are designed for static workloads.
Thus, ad-hoc workloads are not well-supported resulting of-
ten in a poor query performance. (3) Load balancing as well
as adaptive parallelization that are necessary to optimally
execute complex and long-running analytical programs be-
come expensive operations since intermediate results might
need to be re-distributed over the slow network connections.

With modern RDMA-capable networks such as Infiniband
FDR/EDR the before mentioned design decisions become
obsolete. Modern interconnects allow data to transfer across
machines almost as fast as from the CPU to memory. For
instance, DDR3 memory bandwidth currently ranges from
6.25 GB/s (DDR3-800) to 16.6 GB/s (DDR3-2133) for each
memory channel [8], whereas Infiniband has a specified band-
width of 1.7 GB/s (FDR 1×) to 37.5 GB/s (EDR 12×) [3]
for each network port (see Figure 2).

Furthermore, recent advances in RDMA allow to send/read
data directly to/from a remote host without involving the
remote CPU at all and thus free up the CPU for other tasks.
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Figure 1: DDR3 memory vs. Infiniband bandwidth

With Intel Data Direct I/O technology [2], it is even possi-
ble to transfer data from one machine directly into the CPU
cache of another. Thus, instead of finding an optimal parti-
tioning scheme and shipping the computation to the data, a
design where data is shipped to the computation is getting
much more attractive since the before mentioned issues can
be efficiently addressed.

Contributions and Outline: In this paper, we revi-
sit design decisions for distributed data management sys-
tems for OLTP workloads (Section 2) as well as for OLAP
workloads (Section 3), under the assumption that commu-
nication between servers is essentially free.

2. OLTP FOR FAST NETWORKS
Main Ideas: As mentioned before, RDMA provides one-

sided read and write operations that implement an efficient
access to remote memory without involving the remote CPU.
Moreover, atomic RDMA operations such as fetch and add
or compare and swap, implement distributed atomic access
to remote memory. Based on these properties, we suggest a
novel database architecture for transactional workload whe-
re the complete transaction logic is implemented on the cli-
ent side. This enables much better scalability and elasticity
properties and prevents hot database nodes.

Initial Results: As a fist step, we implemented a distri-
buted snapshot isolation schemes where clients execute the
complete transaction logic. In order to execute a transaction,
the client first retrieves the version information of the last
committed transaction (i.e., the version that the transaction
reads). This is implemented as a global counter using atomic
RDMA operations. Afterwards, the client retrieves the cor-
rect versions of database objects from the database nodes
using RDMA reads (and updates them locally in its memo-
ry). For committing the new versions, the client again uses
atomic operations to implement a distributed lock. Figure ??
shows our initial results of the TPC-W buy confirm transac-
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Figure 2: RDMA-based SI vs. Classical SI

tion using our RDMA-based snapshot isolation scheme and
a classical centralized scheme where the transaction logic is
implemented in the database. Compared to the centralized
scheme, our scheme shows similar performance for a small
number of clients but scales much better for an increasing
number of clients.

3. OLAP FOR FAST NETWORKS
Main Ideas: The main focus of distributed query pro-

cessing algorithms is to minimize network costs. Therefore,
existing parallel query processing systems are typically im-
plemented using a data parallel execution scheme (i.e., the
same operation is executed over different partitions of the
data) [6, 5] while re-partitioning operators which would re-
quire remote data transfers are minimized [11]. However,
existing distributed database operations (e.g., joins) do not
pay much attention of efficiently leveraging the caches of in-
dividual machines nor do they optimally load balance the
execution over all nodes of the cluster. With fast RDMA-
capable networks, where the network is no longer a bott-
leneck and an efficient remote memory access is available
via RDMA, cache efficiency is becoming a relevant aspect
for distributed database operations. Thus, as a major aspect
we want revisit typical distributed database operations. One
idea is to adapt parallel main-memory algorithms for query
operators on single multi-core machines (e.g., [4]) that are
much more efficient with regard to load balancing and cache
usage.

Initial Results: As a first step, we implemented a dis-
tributed RDMA-based version of the radix join. A recent
paper has shown that the radix join [4] is the main-memory
join algorithm which has (in most cases) the best query per-
formance on a single node. In our RDMA-based version, we
make use of efficient one-sided RDMA write operations to
implement the radix partitioning phase. Moreover, we use
unsignaled RDMA writes in most cases, which means that
the client does not need to wait for the confirmation. On-
ly, the last RDMA write of the radix partitioning phase on
each node is executed in a signaled way. Since, RDMA ope-
rations are not reordered on a connection, we know that all
data has been written to the remote side if the last write
operation succeeds. Our initial implementation shows, that
our RDMA-based version of the radix join is as efficient as
the local radix join on the same data sizes using the same
computing power (i.e., number of threads).

4. RELATED WORK
There are different existing approaches that address the

problem of distributed data management on fast networks
with RDMA capabilities. FaRM [7], for example, exposes
the memory of machines in a cluster as a shared address
space and offer random memory access as well as transac-
tional support. In contrast to FaRM, our storage manager
does not support random remote memory access, but offers
only restricted access patterns that can be used efficiently to
implement typical distributed database operations.. RAM-
Cloud [9] is designed from scratch for fast interconnects (i.e.,
Infiniband) but it solves a different problem; RAMCloud’s
goal is to lower the latency for key/value operations as much
as possible rather than considering typical data management
operations. For Oracle’s cluster product, Oracle RAC, it is
suggested to use Infiniband [1]. However, the query proces-
sing algorithms and the storage layer of Oracle RAC is neit-
her build from scratch to optimally support fast networks
nor does it support more complex analytical workloads.
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