
Locality-aware Partitioning
in Parallel Database Systems

Erfan Zamanian† Carsten Binnig*† Abdallah Salama*

† Brown University *Baden-Wuerttemberg Cooperative State University
Providence, USA Mannheim, Germany

ABSTRACT
Parallel database systems horizontally partition large
amounts of structured data in order to provide parallel da-
ta processing capabilities for analytical workloads in shared-
nothing clusters. One major challenge when horizontally par-
titioning large amounts of data is to reduce the network costs
for a given workload and a database schema. A common
technique to reduce the network costs in parallel database
systems is to co-partition tables on their join key in order
to avoid expensive remote join operations. However, existing
partitioning schemes are limited in that respect since only
subsets of tables in complex schemata sharing the same join
key can be co-partitioned unless tables are fully replicated.

In this paper we present a novel partitioning scheme called
predicate-based reference partition (or PREF for short) that
allows to co-partition sets of tables based on given join pre-
dicates. Moreover, based on PREF, we present two automa-
tic partitioning design algorithms to maximize data-locality.
One algorithm only needs the schema and data whereas the
other algorithm additionally takes the workload as input.
In our experiments we show that our automated design al-
gorithms can partition database schemata of different com-
plexity and thus help to effectively reduce the runtime of
queries under a given workload when compared to existing
partitioning approaches.

1. INTRODUCTION
Motivation: Modern parallel database systems (such as

SAP HANA [5], Greenplum [21] or Terradata [15]) and other
parallel data processing platforms (such as Hadoop [22], Im-
pala [1] or Shark [23]) horizontally partition large amounts of
data in order to provide parallel data processing capabilities
for analytical queries (e.g., OLAP workloads). One major
challenge when horizontally partitioning data is to achieve
a high data-locality when executing analytical queries since
excessive data transfer can significantly slow down the query
execution on commodity hardware [19].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGMOD’15, May 31 - June 04, 2015, Melbourne, VIC, Australia
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2758-9/15/05 ...$15.00
http://dx.doi.org/10.1145/2723372.2723718.

SUPPLIER(S(
HASHBY
(suppkey)(

ORDERS(O(
REFBY
(custkey)(

LINEITEM(L(
REFBY

(orderkey)(

.(CUSTOMER(C(
HASHBY
(custkey)(

NATION(
REPLICATED$

.(

.(

.(.(

Figure 1: Partitioned TPC-H Schema (simplified)

A common technique to reduce the network costs in ana-
lytical workloads which was already introduced in the 1990’s
by the first parallel database systems is to co-partition ta-
bles on their join keys in order to avoid expensive remote join
operations [8, 10]. However, in complex schemata with ma-
ny tables this technique is limited to only subsets of tables,
which share the same join key. Moreover, fully replicating
tables is only desirable for small tables. Consequently, with
existing partitioning schemes remote joins are typically una-
voidable for complex analytical queries with join paths over
multiple tables using different join keys.

Reference partitioning [9] (or REF partitioning for short) is
a more recent partitioning scheme that co-partitions a table
by another table that is referenced by an outgoing foreign
key (i.e., referential constraint). For example, as shown in
Figure 1, if table CUSTOMER is hash partitioned on its pri-
mary key custkey, then table ORDERS can be co-partitioned
using the outgoing foreign key (fk) to the table CUSTOMER

table. Thus, using REF partitioning, chains of tables linked
via foreign keys can be co-partitioned. For example, table
LINEITEM can also be REF partitioned by table ORDERS. Ho-
wever, other join predicates different from the foreign key or
even incoming foreign keys are not supported by REF parti-
tioning. For example, table SUPPLIER in Figure 1 can not be
REF partitioned by the table LINEITEM.

Contributions: In this paper, we present a novel parti-
tioning scheme called predicate-based reference partitioning
(or PREF for short). PREF is designed for analytical workloads
where data is loaded in bulks. The PREF partitioning scheme
generalizes the REF partitioning scheme such that a table can
be co-partitioned by a given join predicate that refers to ano-
ther table (called partitioning predicate). In Figure 1, table
SUPPLIER can thus be PREF partitioned by table LINEITEM

using an equi-join predicate on the attribute suppkey as par-
titioning predicate. In order to achieve full data-locality with
regard to the partitioning predicate, PREF might introduce
duplicate tuples in different partitions. For example, when
PREF partitioning the table SUPPLIER as described before and
the same value for the suppkey attribute appears in multiple

17

partitions of the table LINEITEM, then the referencing tuple
in table SUPPLIER will be duplicated to all corresponding
partitions of SUPPLIER. That way, joins which use the par-
titioning predicate as join predicate can be executed locally
per node. However, in the worst case, the PREF partitioning
scheme might lead to full replication of a table. Our expe-
riments show that this is only a rare case for complex sche-
mata with a huge number of tables and can be avoided by
our automatic partitioning design algorithms.

Furthermore, it is a hard problem to manually find the
best partitioning scheme for a given database schema that
maximizes data-locality using our PREF partitioning scheme.
Existing automated design algorithms [14, 18, 20] are not
aware of our PREF partitioning scheme. Thus, as a second
contribution, we present two partitioning design algorithms
that are aware of PREF. Our first algorithm is schema-driven
and assumes that foreign keys in the schema represent po-
tential join paths of a workload. Our second algorithm is
workload-driven and additionally takes a set of queries into
account. The main idea is to first find an optimal partitio-
ning configuration separately for subsets of queries that sha-
re similar sets of tables and then incrementally merge tho-
se partitioning configuration. In our experiments, we show
that by using the PREF partitioning scheme, our partitioning
design algorithms outperform existing automated design al-
gorithms, which rely on a tight integration with the data-
base optimizer (i.e, to get the estimated costs for a given
workload).

Outline: In Section 2, we present the details of the PREF

partitioning scheme and discuss details about query proces-
sing and bulk loading. Afterwards, in Section 3, our schema-
driven automatic partitioning design algorithm is presented.
Section 4 then describes the workload-driven algorithm and
discusses potential optimizations to reduce the search space.
Our comprehensive experimental evaluation with the TPC-
H [3] and the TPC-DS benchmark [2] is discussed in Section
5. We have chosen these two benchmarks as we wanted to
show how our algorithms work for a simple schema with uni-
formly distributed data (TPC-H) and for a complex schema
with skewed data (TPC-DS). Finally, we conclude with re-
lated work in Section 6 and a summary in Section 7.

2. PREDICATE-BASED REFERENCE PAR-
TITIONING

In the following, we first present the details of our predicate-
based reference partitioning scheme (or PREF for short) and
then discuss important details of executing queries over PREF
partitioned tables as well as bulk-loading those tables. In
terms of notation we use capital letters for tables (e.g., ta-
ble T) and small letters for individual tuples (e.g., tuple
t ∈ T). Moreover, if a table T is partitioned into n partiti-
ons, the individual partitions are identified by Pi(T) (with
1 ≤ i ≤ n).

2.1 Definition and Terminology
The PREF partitioning scheme is defined as follows:

Definition 1 (PREF Partitioning Scheme). If a ta-
ble S is partitioned into n partitions using an arbitrary hori-
zontal partitioning-scheme, then table R is PREF partitioned
by that table S and a given partitioning predicate p, iff (1)
for all 1 ≤ i ≤ n, Pi(R) = {r|r ∈ R ∧ (∃s ∈ Pi(S)|p(r, s))}
holds and (2) ∀r ∈ R|(∃r ∈ Pi(R), 1 ≤ i ≤ n). In PREF

we call S the referenced table and R the referencing table.
The referenced table could be again PREF partitioned. The
seed table of a PREF partitioned table R is the first table T
in the path of the partitioning predicates that is not PREF

partitioned.

Condition (1) in the definition above means that a tuple
r ∈ R is in a partition Pi(R) if there exists at least one
tuple s ∈ Pi(S) that satisfies the given partition predicate
p (i.e., p(r, s) evaluates to true) for the given i. A tuple s
that satisfies p(r, s) is called partitioning partner. Therefore,
if p is satisfied for tuples in different partitions of S, then
a copy of r will be inserted to all these partitions which
leads to duplicates (i.e., redundancy). Moreover, condition
(2) means that each tuple r ∈ R must be assigned to at
least one partition (even if there exists no tuple s ∈ Pi(S) in
any partition of S that satisfies p(r, s)). In order to satisfy
condition (2), we assign all tuples r ∈ R that do not have
a partitioning partner in S in a round-robin fashion to the
different partitions Pi(R) of R.

As mentioned before, any partitioning scheme can be used
(e.g., hash, range, round-robin or even PREF) for the refe-
renced table. For simplicity but without loss of generality,
we use only the HASH and PREF partitioning scheme in the
remainder of the paper. Moreover, only simple equi-join pre-
dicates (as well as conjunctions of simple equi-join predica-
tes) are supported as partitioning predicates p since other
join predicates typically result in full redundancy of the PREF
partitioned table (i.e., a tuple is then likely to be assigned
to each partition of R).

Example: Figure 2 shows an example of a database be-
fore partitioning (upper part) and after partitioning (lower
part). In the example, the table LINEITEM is hash partitio-
ned and thus has no duplicates after partitioning. The ta-
ble ORDERS (o) is PREF partitioned by table LINEITEM (l)
using a partitioning predicate on the join key (orderkey);
i.e., ORDERS is the referencing table and LINEITEM the refe-
renced table as well as the seed table. For the table ORDERS,
the PREF partitioning scheme introduces duplicates to achie-
ve full data-locality for a potential equi-join over the join key
(orderkey). Furthermore, the table CUSTOMER (c) is PREF

partitioned by ORDERS using the partitioning predicate on
the join key (custkey); i.e., CUSTOMER is the referencing ta-
ble and ORDERS the referenced table whereas LINEITEM is the
seed table of the CUSTOMER table. Again, PREF partitioning
the CUSTOMER table results in duplicates. Moreover, we can
see that the customer (custkey=3), who has no order, is also
added to the partitioned table CUSTOMER (in the first parti-
tion).

Thus, by using the PREF partitioning scheme, all tables
in a given join path of a query can be co-partitioned as
long as there is no cycle in the query graph. Finding the
best partitioning scheme for all tables in a given schema
and workload that maximizes data-locality under the PREF

scheme, however, is a complex task and will be discussed in
Sections 3 and 4.

For query processing, we create two additional bitmap in-
dexes when PREF partitioning a table R by S: The first bit-
map index dup indicates for each tuple r ∈ R if it is the first
occurrence (indicated by a 0 in the bitmap index) or if r is a
duplicate (indicated by a 1 in the bitmap index). That way
duplicates that result from PREF partitioning can be easily
eliminated during query processing, as will be explained in

18

custkey	 cname	
1	 A	
3	 C	

custkey	 cname	
1	 A	
2	 B	

custkey	 cname	
1	 A	

linekey	 orderkey	
0	 1	
3	 2	

linekey	 orderkey	
1	 4	
4	 3	

linekey	 orderkey	
2	 1	

HASH-‐par..oned	
by	 linekey%3

PREF-‐par..oned	 on	 Orders
by	 c.custkey=o.custkey

Table	 Lineitem l Table	 Customer c

dup	 hasO	
0	 1	
0	 0	

dup	 hasO	
1	 1	
0	 1	

dup	 hasO	
1	 1	

Indexes

orderkey	 custkey	
1	 1	
2	 1	

orderkey	 custkey	
4	 1	
3	 2	

orderkey	 custkey	
1	 1	

PREF-‐par..oned	 on	 Lineitem
by	 o.orderkey=l.orderkey

Table	 Orders o

dup	 hasL	
0	 1	
0	 1	

dup	 hasL	
0	 1	
0	 1	

dup	 hasL	
1	 1	

Indexes Data Data Data

linekey	 orderkey	
0	 1	
1	 4	
2	 1	
3	 2	
4	 3	

orderkey	 custkey	
1	 1	
2	 1	
3	 2	
4	 1	

custkey	 cname	
1	 A	
2	 B	
3	 C	

Table	 Lineitem l Table	 Customer c Table	 Orders o

Database	 D	 (before	 Par==oning):	

Database	 DP	 (aAer	 Par==oning):	

Figure 2: A PREF partitioned Database

more details in Section 2.2. The second index hasS indicates
for each tuple r ∈ R if there exists a tuple s ∈ S which
satisfies p(r, s). That way, anti-joins and semi-joins can be
optimized. The example in Figure 2 shows these indexes for
the two PREF partitioned tables. Details about how these
indices are used for query processing is discussed in the fol-
lowing Section 2.2.

2.2 Query Processing
In the following, we discuss how queries need to be rewrit-

ten for correctness, if PREF partitioned tables are included
in a given SQL query Q. This includes adding operations
for eliminating duplicates resulting from PREF partitioned
tables and adding re-partitioning operations for correct par-
allel query execution. Furthermore, we also discuss rewrites
for optimizing SQL queries (e.g., to optimize queries with
anti-joins or outer joins). All these rewrite rules are applied
to a compile plan P of query Q. Currently, our rewrite rules
only support SPJA queries (Selection, Projection, Join and
Aggregation), while nested SPJA queries are supported by
rewriting each SPJA query block individually.

Rewrite Process: The rewrite process is a bottom-up
process, which decides for each operator o ∈ P if a dis-
tinct operation or a re-partitioning operation (i.e., a shuffle
operation) must be applied to its input(s) before executing
the operator o. Note that our distinct operator is not the
same as the SQL DISTINCT operator. Our distinct ope-
rator eliminates only those duplicates which are generated
by our PREF scheme. Duplicates from PREF partitioning can
be eliminated using a disjunctive filter predicate that uses
the condition dup=0 for each dup attribute of a tuple in an
(intermediate) result. A normal SQL DISTINCT operator,
however, can still be executed using the attributes of a tuple
to find duplicates with the same values. In the rest of the
paper, we always refer to the semantics of our distinct ope-
rator. Moreover, the re-partitioning operator also eliminates
duplicates resulting from PREF partitioning before shuffling
tuples over the network.

In order to decide if a distinct operation or a re-partitioning
operation must be applied, the rewrite process annotates two
properties to each intermediate result of an operator o ∈ P .
In the following, we also use the variable o to refer to the

intermediate result produced by operator o.
• Dup(o): defines if the (intermediate) result o is free of

duplicates resulting from PREF partitioning (Dup(o) =
0) or not (Dup(o) = 1). For tables, we use the same
notation; i.e., Dup(T) defines whether table T contains
duplicates due to PREF partitioning or not. For a hash
partitioned table T , we get Dup(T) = 0.
• Part(o): defines a partitioning scheme for the (inter-

mediate) result o including the partitioning method
Part(o).m (HASH, PREF, or NONE if neither of the other
schemes holds), the list of partitioning attributes
Part(o).A and the number of partitions Part(o).c.
Again, for tables we use the same notation; i.e., Part(T)
defines the partitioning scheme of table T .

In the following, we discuss the rewrite rules for each ty-
pe of operator of an SPJA query individually. Moreover, we
assume that the last operator of a plan P is always projecti-
on operator that can be used to eliminate duplicates resul-
ting from PREF partitioning. We do not discuss the selection
operator since neither additional duplicate eliminations nor
re-partitioning operators need to be added to its input (i.e.,
the selection operator can be executed without applying any
of these rewrites).

Inner equi-join o = (oin1 1oin1.a1=oin2.a2 oin2): The
only re-write rule, we apply to an inner equi-join, is to add
additional re-partitioning operators over its inputs oin1 and
oin2. In the following, we discuss three cases when no re-
partitioning operator needs to be added.

(1) The first case holds, if both inputs are hash parti-
tioned and they use the same number of partitions
(i.e., Part(oin1).c = Part(oin2).c holds). Moreover,
Part(oin1).A = [a1] and Part(oin2).A = [a2] must
hold as well (i.e., the join keys are used as partitio-
ning attributes).

(2) The second case holds, if Part(oin1).m = HASH and
Part(oin2).m = PREF whereas the join predicate a1 =
a2 must be the partitioning predicate of the PREF sche-
me. Moreover, the partitioning scheme Part(oin1) must
be the one used for the seed table of the PREF scheme
Part(oin2).

(3) The third case holds, if Part(oin1).m = PREF and
Part(oin2).m = PREF whereas the join predicate a1 =
a2 must be the partitioning predicate of the PREF sche-
ma of one input (called referencing input). The other
input is called referenced input. Moreover, both PREF

schemes must reference the same seed table.
For example, case (2) above holds for a join operation

(l 1l.linekey=o.linekey o) over the partitioned database in Fi-
gure 2. Moreover, case (3) holds for a join operation
(o 1o.custkey=c.custkey c) over the same schema.

Otherwise, if none of these three cases holds, the rewri-
te procedure applies re-partitioning operators to make sure
that both inputs use a hash partitioning scheme where the
join key is the partitioning attribute and both schemes use
the same number of partitions. The re-partitioning opera-
tor also eliminates duplicates resulting form a PREF scheme
as discussed before. If one input is already hash partitioned
(using the join key as partitioning attribute), then we only
need to re-partition the other input accordingly.

After discussing the rewrite rules, we now present how
the properties Dup(o) and Part(o) are set by the rewri-
te procedure. If we add a re-partitioning operation as dis-
cussed before, then we use the hash partitioning scheme

19

Customer c Orders o

SELECT
 SUM(o.total) as revenue
FROM
 Orders o JOIN Customer c
 ON o.custkey = c.custkey
GROUP BY
 c.cname

χSUM(o.total),c.cname

⨝c.custkey=o.custkey

Customer c Orders o

χSUM(o.total),c.cname

⨝c.custkey=o.custkey

SQL$Query)Q:) Canonical)Plan:) Rewri5en)Plan:)

Reparthash(c.cname)

πSUM(o.total) as revenue πSUM(o.total) as revenue

Dup=1
Sch=PREF!

Dup=0
Sch=HASH!

Dup=0
Sch=HASH!

Dup=1
Sch=PREF!

Dup=1
Sch=PREF!

Figure 3: Rewrite Process for Plan P

of the re-partitioning operator to initialize Part(o) and set
Dup(o) = 0 since we eliminate duplicates. In case that we
do not add a re-partitioning operation (i.e., in the cases 1-3
before), we initialize Part(o) as follows: In case (1), we set
Part(o) to be the hash partitioning scheme of one of the in-
puts (remember, that both inputs use the same partitioning
scheme) and Dup(o) = 0 since hash partitioned tables ne-
ver contain duplicates. In cases (2) and (3), we use the PREF

scheme of the referenced input to initialize Part(o). Moreo-
ver, in case (2), we always set Dup(o) = 0. In case (3), we
set Dup(o) = 0 if the referenced input has no duplicates.
Otherwise, we set Dup(o) = 1.

For example, for the intermediate result of the join
(c 1c.custkey=o.custkey o) where case (3) holds, the rewri-
te procedure initializes Part to be the PREF scheme of the
ORDERS table and sets Dup to 1.

Other joins: While equi-joins can be executed on parti-
tioned inputs (as discussed before), other joins such as cross
products o = (oin1×oin2) and theta joins o = (oin1 1p oin2)
with arbitrary join predicates p need to be executed as re-
mote joins that ships the entire smaller relation to all clus-
ter nodes. For these joins, we set Part(o).m = NONE . Mo-
reover, we also eliminate duplicates in both inputs and set
Dup(o) = 0.

Furthermore, an outer join can be computed as the union
of an inner equi-join and an anti-join. An efficient implemen-
tation for anti-joins is presented at the end of this section.

Aggregation o = χGrpAtts,AggFuncs(oin): If the partition
scheme of the input operator oin is hash partitioned and if
the condition GrpAtts.startWith(Part(oin).A) (i.e., the list
of group-by attributes starts with or is the same as the list of
partitioning attributes), then we do not need to re-partition
the input. Otherwise, a re-partitioning operator is added
that hash partitions the input oin by the GrpAtts. Moreo-
ver, if Dup(oin) = 1 holds, the re-partitioning operator also
eliminates duplicates (as described before). Finally, the re-
write process sets Part(o) to Part(oin) if no re-partitioning
operator is added. Otherwise, it sets Part(o) to the hash
partitioning scheme used for re-partitioning. Moreover, in
any case it sets Dup(o) = 0 .

Figure 3 shows an example of an aggregation query over
the partitioned database shown in Figure 2. In that exam-
ple, the output of the join is PREF partitioned and contains
duplicates (as already discussed before). Thus, the input of
the aggregation must be re-partitioned using a hash parti-
tioning scheme on the group-by attribute c.cname (which is
used as the partitioning scheme of its output). Moreover, the
re-partitioning operators eliminates the duplicates resulting
from PREF.

Projection o = πAtts(oin): For the projection operator

the input oin is never re-partitioned. However, if Dup(oin) =
1 we add a distinct operation on input oin that eliminates
duplicates using the dup indexes. For this operator, we set
Part(o) = oin and Dup(o) = 0.

Further Rewrites for Query Optimization: Further
rewrite rules can be applied for query optimization when
joining a PREF partitioned table R with a referenced table
S on p using the index hasS: (1) An anti-join over R and
S can be rewritten by using a selection operation with the
filter predicate hasS = 0 on R without actually joining S.
(2) A semi-join over R and S can be rewritten by using a
selection operation with the filter predicate hasS = 1 on R
without actually joining S.

2.3 Bulk Loading
As discussed before, the PREF scheme is designed for data

warehousing scenarios where new data is loaded in bulks. In
the following, we discuss how inserts can be executed over
a PREF partitioned table R that references a table S. We
assume that the referenced table S has already been bulk
loaded.

In order to insert a new tuple r into table R, we have to
identify those partitions Pi(R) into which a copy of a tu-
ple r must be inserted. Therefore, we need to identify those
partitions Pi(S) of the referenced table S that contain a
partitioning partner (i.e., a tuple s which satisfies the par-
titioning predicate p for the given tuple r). For example, in
Figure 2 table CUSTOMER is PREF partitioned referencing table
ORDERS. When inserting a customer tuple with custkey = 1
into table CUSTOMER, a copy must be inserted into all three
partitions since all partitions of ORDERS have a tuple with
custkey = 1.

For efficiently implementing the insert operation of new
tuples without executing a join of R with S, we create a
partition index on the referenced attribute of table S. The
partition index is a hash-based index that maps unique at-
tribute values to partition numbers i. For example, for the
table ORDERS schema in Figure 2, we create a partition index
on the attribute custkey that maps e.g. custkey = 1 to par-
titions 1 to 3. We show in our experiments in Section 5 that
partition indexes help to efficiently execute bulk loading of
new tuples.

Finally, updates and deletes over a PREF partitioned table
are applied to all partitions. However, we do not allow that
updates modify those attributes used in a partitioning pre-
dicate of a PREF scheme (neither in the referenced nor in the
referencing table). Since join keys are typically not updated
in data warehousing scenarios this restriction does not limit
the applicability of PREF.

3. SCHEMA-DRIVEN AUTOMATED PAR-
TITIONING DESIGN

In this section, we present our schema-driven algorithm for
automated partitioning design. We first discuss the problem
statement and then give a brief overview of our solution. Af-
terwards, we present important details on how we maximize
data-locality while minimizing data-redundancy.

3.1 Problem Statement and Overview
The Problem Statement can be formulated as the following

optimization problem: Given a schema S (including referen-
tial constraints) and the non-partitioned database D, define

20

Schema'Graph'GS'
(with'weights):'

Maximum'Spanning''
Tree'MAST:'

Par99oning''
Configura9on:'

L"

C" S"

N"

150k" 10k"
O"

1.5m"

25" 25"

L"

C" S"

N"

150k" 10k"
O"

1.5m"

25"

L"

C" S"

N"

O" SP"PREF
on L"

PREF
on O"

PREF
on C"

PREF
on L"

Figure 4: Schema-driven Partitioning Design

a partitioning scheme (HASH or PREF) for each table T ∈ S
(called partitioning configuration) such that data-locality in
the resulting partitioned database DP is maximized with re-
gard to equi-join operations over the referential constraints,
while data-redundancy is minimized. In other words, whi-
le the main optimization goal is maximizing data-locality
under the given partitioning schemes, among those materia-
lization configurations with the same highest data-locality,
the one with the minimum data-redundancy should be cho-
sen.

Note that in the above problem statement, we do not con-
sider full replication as a possible choice for a table. The re-
ason is that full replication is only desirable for small tables,
while PREF can find a middle ground between partitioning
and full replication for other tables that can not be fully rep-
licated. Furthermore, small tables that are candidates for full
replication can be excluded from the given database schema
before applying our design algorithm. In order to solve the
before mentioned optimization problem, our algorithm exe-
cutes the following three steps.

The first step is to create an undirected labeled and weigh-
ted graph GS = (N,E, l(e ∈ E), w(e ∈ E)) for the given
schema S (called schema graph). While a node n ∈ N repres-
ents a table, an edge e ∈ E represents a referential constraint
in S. Moreover, the labeling function l(e ∈ E) defines the
equi-join predicate for each edge (which is derived from the
referential constraint) and the weighting function w(e ∈ E)
defines the network costs if a remote join needs to be exe-
cuted over that edge. The weight w(e ∈ E) of an edge is
defined to be the size of the smaller table connected to the
edge e. The intuition behind this is that the network costs
of a potential remote join over an edge e depend on the size
of the smaller table, since this table is typically shipped over
the network. It is clear that we ignore the selectivity of more
complex queries (with selection operators and multiple joins)
and thus w(e ∈ E) only represents an upper bound. Howe-
ver, our experiments show that w(e ∈ E) is a good proxy to
represent the total workloads costs even for workloads with
complex queries. Figure 4 (left hand side) shows the schema
graph resulting from our simplified version of the TPC-H
schema for scaling factor SF = 1.

As a second step, we extract a subset of edges Eco from
GS that can be used to co-partition all tables in GS such
that data-locality is maximized. For a given connected GS ,
the desired set of edges Eco is the maximum spanning tree
(or MAST for short). The reason of using the MAST is that
by discarding edges with minimal weights from the GS , the
network costs of potential remote joins (i.e., over edges not
in the MAST) are minimized and thus data-locality as defined
above is maximized. A potential result of this step is shown
in Figure 4 (center).

Typically, there exists more than one MAST with the sa-

me total weight for a connected GS . For example, in Figu-
re 4, instead of discarding the edge between SUPPLIER and
NATION, one could also discard the edge between CUSTOMER

and NATION since this edge has the same weight. If different
MASTs with the same total weight exist, then the following
step must be applied for each MAST individually.

Finally, in the last step we enumerate all possible partitio-
ning configurations that can be applied for the MAST to find
out which partitioning configuration introduces the mini-
mum data-redundancy. Minimizing data-redundancy is im-
portant since this has direct effect on the runtime of queries
(even if we can achieve maximal data-locality). The partitio-
ning configurations, which we enumerate in our algorithm,
all follow the same pattern: one table in the MAST is selected
to be the seed table which uses a hash partitioning sche-
me. In general, it could use any of the existing partitioning
schemes such as hash, round-robin, or range partitioning.
As partitioning attribute, we use the join attribute in the
label l(e) of the edge e ∈ E, which is connected to the no-
de representing the seed table and has the highest weight
w(e). All other tables are recursively PREF partitioned on
the seed table using the labels of the edges in the MAST as
partitioning predicates. Figure 4 (right hand side) shows one
potential partitioning configuration for the MAST, which uses
the LINEITEM table as the seed table.

3.2 Maximizing Data-Locality
Data-locality (DL) for a given schema graph GS and the

subset of edges Eco used for co-partitioning is defined as
follows:

DL =

∑
e∈Eco

w(e)∑
e∈E w(e)

While DL = 1 means that Eco contains all edges in GS

(i.e., no remote join is needed), DL = 0 means that Eco is
empty (i.e., no table is co-partitioned by any other table).
For example, if we hash partition all tables of a schema on
their primary keys, then data-locality will be 0 (as long as
the tables do not share the same primary key attributes).

In order to maximize data-locality for a given schema
graph GS that has only one connected component, we ex-
tract the maximum spanning tree MAST based on the given
weights w(e ∈ E). The set of edges in the MAST represents
the desired set Eco since adding one more edge to a MAST

will result in a cycle which means that not all edges can be
used for co-partitioning. If GS has multiple connected com-
ponents, we extract the MAST for each connected component.
In this case Eco represents the union over the edges of all
maximum spanning trees.

One other solution (instead of extracting the MAST) is to
duplicate tables (i.e., nodes) in the GS in order to remove cy-
cles and allow one table to use different partitioning schemes.
However, join queries could still potentially require remote
joins. For example, if we duplicate table NATION in the GS

of Figure 4 (left hand side), we can co-partition one copy of
NATION by CUSTOMER and one copy of NATION by SUPPLIER.
However, a query using the join path C− N− S then still
needs a remote join either from over the edge C −N or the
edge N − S. Therefore, in our schema-driven algorithm we
do not duplicate nodes at all.

3.3 Minimizing Data-Redundancy
The next step after maximizing data-locality is to find

21

Listing 1: Enumerating Partitioning Configurations
1 function findOptimalPC(MAST mast, Database D){
2 PartitionConfig optimalPC;
3 optimalPC.estimatedSize = MAX_INT;
4
5 for(each node nST in N(mast)){
6 // build new PC based on seed table
7 PartitionConfig newPC;
8 newPC.addScheme(nST , SP);
9 addPREF(mast , nST , newPC);

10
11 // estimate size of newPC
12 estimateSize(newPC, mast, D);
13 if(newPC.estimatedSize <optimalPC.estimatedSize)
14 optimalPC = newPC;
15 }
16 return optimalPC;
17 }
18
19 // recursively PREF partition tables
20 function addPREF(MAST mast, Node referring,
21 PartitionConfig pc){
22 for(each node ref connected
23 to referring by edge e in mast){
24 if(pc.containsScheme(ref))
25 continue;
26 newPC.addScheme(ref , PREF on referring by l(e));
27 addPREF(mast, ref , pc);
28 }
29 }

a partitioning configuration for all tables in the schema S,
which minimizes data-redundancy in the partitioned data-
base DP . Therefore, we first define data-redundancy (DR)
as follows:

DR =
|DP |
|D| − 1 =

∑
T∈S |T

P |∑
T∈S |T |

− 1

While |DP | represents the size of the database after par-
titioning, |D| represents the original size of the database
before partitioning. |DP | is defined to be the sum of sizes of
all tables T ∈ S after partitioning (denoted by TP). Conse-
quently, DR = 0 means that no data-redundancy was added
to any table after partitioning, while DR = 1 means that
100% data-redundancy was added after partitioning (i.e.,
each tuple in D exists in average twice in DP). Fully repli-
cating each table to all n nodes of a cluster thus results in
data-redundancy n− 1.

In Listing 1, we show the basic version of our algorithm
to enumerate different partitioning configurations (PCs) for
a given MAST. For simplicity (but without loss of generality),
we assume that the schema graph GS has only one connected
component with only one MAST. Otherwise, we can apply the
enumeration algorithm for each MAST individually.

The enumeration algorithm (function findOptimalPC in
Listing 1) gets a MAST and a non-partitioned database D
as input and returns the optimal partitioning configuration
for all tables in D. The algorithm therefore analyzes as ma-
ny partitioning configurations as we have nodes in the MAST

(line 5-15). Therefore, we construct partitioning configura-
tions (line 7-9) that follow the same pattern: one table is
used as the seed table that is partitioned by one of the seed
partitioning schemes (or SP for short) such as hash parti-
tioning and all other tables are recursively PREF partitioned

on the edges of the MAST (see function addPREF). For each
partitioning configuration newPC, we finally estimate the
size of the partitioned database when applying newPC and
compare it to the optimal partitioning configuration so far
(line 12-14). While seed tables in our partitioning design al-
gorithms never contain duplicate tuples, PREF partitioned
tables do. In order to estimate the size of a database after
partitioning, the expected redundancy in all tables which are
PREF partitioned must be estimated. Redundancy is cumu-
lative, meaning that if a referenced table in the PREF scheme
contains duplicates, the referencing table will inherit those
duplicates as well. For example, in Figure 2 the duplicate
orders tuple with orderkey = 1 in the ORDERS table results
in a duplicate customer tuple with custrkey = 1 in the refe-
rencing CUSTOMER table. Therefore, in order to estimate the
size of a given table, all referenced tables up to the seed
(redundancy-free) table must be considered. The details of
the size estimation of tables after partitioning are explained
in Appendix A.

3.4 Redundancy-free Tables
As described in Section 3.3, the final size of a given table

after partitioning is determined by the redundancy factors
of all the edges from the seed table to the analyzed table.
In complex schemata with many tables, this might result in
full or near full redundancy for PREF partitioned tables. This
is because only one table is determined by the algorithm
to be the seed table, while all other tables are PREF parti-
tioned. In order to remedy this problem, our enumeration
algorithm can additionally take user-given constraints as in-
put which disallows data-redundancy for individual tables.
Therefore, we adopt the enumeration algorithm described
in Section 3.3 as follows: (1) We also enumerate partitioning
configurations which can use more than one seed table. We
start with configurations with one seed table and increase
the number up to |S| seed tables until we satisfy the user-
given constraints. Since the maximal data-locality for a MAST

monotonically decreases with an increasing number of seed
tables, we can stop the enumeration early once we find a
partitioning configuration that satisfies the user-given cons-
traints. This scheme, will be the partitioning scheme with
the maximal data-locality that also satisfies the user-given
constraints. (2) We prune partitioning configurations ear-
ly that add data-redundancy for tables where a user-given
constraint disallows data-redundancy. That means for ta-
bles where we disallow data-redundancy, we can either use
a seed partitioning scheme or a PREF partitioning scheme
whose partition predicate refers to the primary key of a ta-
ble that has no data-redundancy.

4. WORKLOAD-DRIVEN AUTOMATED
PARTITIONING DESIGN

In this section, we discuss our workload-driven automa-
ted partitioning design algorithm. Again, we start with the
problem statement and then give a brief overview of our so-
lution. Afterwards, we discuss the details of our algorithm.

4.1 Problem Statement and Overview
The Problem Statement can be formulated as the follo-

wing optimization problem: Given a schema S, a workload
W = {Q1, Q2, ..., Qn} and the non-partitioned database D,
define a partitioning scheme (HASH or PREF) for the tables

22

Maximum'Spanning''
Trees'MAST(Qi):'

Merged'MASTs''
(First'Phase):'

Merged'MASTs'
(Second'Phase):'

L"C"

S"

O"

L"O"

L"

S" N"

L"C" O"

S"L"

S" N"
S"L" N"

L"C" O"

SP" PREF
on C "

SP"

SP"

SP"

SP"

|D
P(
Q
3)|

+|
D P
(Q

4)|
=6
.0
2m

0

|D
P(
Q
3+
4)|

=6
.0
1m

0

Q1"

Q2"

Q3"

Q4"

Q1+2"

Q3"

Q4"

Q1+2"

Q3+4"

PREF
on O "

PREF
on N "

PREF
on S "

PREF
on C "

PREF
on O "

PREF
on S "

PREF
on N "

1.5m"150k"

1.5m"

25"

10k"

Figure 5: Workload-driven Partitioning Design

used by each query Qi ∈ W (called partitioning configu-
ration) such that data-locality is maximized for each query
Qi individually, while data-redundancy is globally minimi-
zed for all Qi ∈ W . Like schema-driven partitioning, the
main optimization goal is to maximize data-locality under
the given partitioning schemes; data-redundancy is only sub-
ordinate. In order to solve this optimization problem our al-
gorithm executes the following three steps.

In the first step our algorithm creates a separate schema
graph GS(Qi) for each query Qi ∈W where edges represent
the join predicates in a query. Afterwards, we compute the
MAST(Qi) for each GS(Qi). That way, data-locality for each
query Qi ∈W is maximized, since one optimally partitioned
minimal database DP (Qi) could be generated for each query
individually. However, this would result in a very high data-
redundancy since individual tables will most probably exist
several times (using different partitioning schemes for diffe-
rent queries). For example, Figure 5 (left hand side) shows
the MASTs resulting from four different queries in a workload
W = {Q1, Q2, Q3, Q4}. Again, if different MASTs with the
same total weight exist for one query, we can keep them all
to find the optimal solution in the following steps.

In the second step, we merge MASTs of individual queries
in order to reduce the search space of the algorithm. Given
the MASTs, the merge function creates the union of nodes
and edges in the individual MASTs.In this phase we merge
a MAST(Qj) into a MAST(Qi) if the MAST of Qj is fully con-
tained in the MAST of Qi (i.e. MAST(Qi) contains all nodes
and edges with the same labels and weights of MAST(Qj)).
Thus, no cycles can occur in this merge phase. The merged
MAST is denoted by MAST(Qi+j) If MAST(Qj) is fully contai-
ned in different MASTs, we merge it into one of these MASTs.
Moreover, at the end of the first merging phase, we determi-
ne the optimal partitioning configuration and estimate the
total size of the partitioned database for each merged MAST

(using function findOptimalPC in Listing 1). Figure 5 (cen-
ter) shows a potential result of the first merging phase. This
step effectively reduces the search space for the subsequent
merging phase.

In the last step (i.e. a second merge phase), we use a
cost-based approach to further merge MASTs. In this step,
we only merge MAST(Qj) into MAST(Qi) if the result is acy-
clic and if we do not sacrifice data-locality while reducing
data-redundancy (i.e., if |DP (Qi+j)| < |DP (Qi)|+|DP (Qj)|
holds). Figure 5 (right hand side) shows a potential result
of the second merging phase. In this example MAST of Q3

and Q4 are merged since the size of the resulting database
DP (Q3+4) after merging is smaller than the sum of sizes of
the individual partitioned databases DP (Q3)+DP (Q4). For
query execution, a query can be routed to the MAST which
contains the query and which has minimal data-redundancy
for all tables read by that query.

4.2 Maximizing Data-Locality
In order to maximize data-locality for a given workload

W , we first create a separate schema graph GS(Qi) for each
query Qi ∈ W as described before. The schema graph for
the workload-driven algorithm is defined the same way as
described in Section 3 as GS = (N,E, l(e ∈ E), w(e ∈ E))
and can be derived from the query graph of a query Qi: A
query graph is defined in the literature as an undirected la-
beled graph GQ = (N,E, l(e ∈ E)) where each node n ∈ N
represents a table (used by the query). An edge e ∈ E repres-
ents a join predicate between two tables while the labeling
function l(e ∈ E) that returns the join predicate for each
edge.

Currently, when transforming a query graph GQ(Qi) in-
to an equivalent schema graph GS(Qi), we only consider
those edges which use an equi-join predicate as label. Note
that this does not mean that queries in workload W can on-
ly have equi-join predicates. It only means that edges with
non-equi join predicates are not added to the schema graph
since these predicates result in high data-redundancy any-
way when used for co-partitioning tables by PREF as discus-
sed in Section 2. Moreover, for creating the schema graph
GS , a weighting function w(e ∈ E) needs to be defined for
the GS . This is trivial since the table sizes are given by the
non-partitioned databaseD that is an input to the workload-
driven algorithm as well. Note that in addition to table sizes,
edge weights GS could also reflect costs of a query optimizer
to execute the join, if these information items are provided.
However, then the merging function would need to be mo-
re complex (i.e., a simple union of nodes and edges is not
enough since the same edge could have different weights). In
the following, we assume that edge weights represent table
sizes.

Once the schema graph GS(Qi) is created for each que-
ry Qi ∈ W , we can derive the maximum spanning tree
MAST(Qi) for each GS(Qi). The MAST(Qi) represents the set
of edges Eco(Qi) that can be used for co-partitioning tables
in Qi. All edges that are in the query graph of Qi but not in
the MAST(Qi) will result in remote joins. Data-localityDL for
a query is thus defined in the same way as before in Section
3.2 as the fraction of the sum of weights in Eco(Qi) and the
sum of weights for all edges in GS(Qi). As shown in Secti-
on 3 using the edges of a MAST for co-partitioning maximizes
data-locality unless we additionally allow to duplicate tables
(i.e., nodes) in order to remove cycles in GS(Qi). Moreover,
in contrast to the schema-driven algorithm, if a connected
GS has different MASTs with the same total weight, our al-
gorithm additionally finds the optimal partitioning configu-
ration for each of the MASTs and estimates the size of the
partitioned database as shown in Listing 1. For the subse-
quent merging phase, we only keep that MAST which results
in a partitioned database with minimal estimated size.

4.3 Minimizing Data-Redundancy
Merging the MASTs of different queries is implemented in

two steps as described before: using heuristics in the first
merge phase to effectively reduce the search space for the
second cost-based merge phase to further reduce data-re-
dundancy. The result after both merging phases is a set of
MASTs and an optimal partitioning configuration for each
MAST. If a table appears in different MASTs using different
partitioning schemes in the partitioning configuration, we
duplicate the table in the final partitioned database DP that

23

we create for all MASTs. However, if a table appears in dif-
ferent MASTs and uses the same partitioning scheme we do
not duplicate this table in DP . Data-redundancy for a set
of MASTs is thus defined as a fraction of the sum of all parti-
tioned tables and the size of the non-partitioned D. In the
following, we only discuss the cost-based merging in detail
since the first merge step is trivial.

For cost-based merging, we first define the term merge
configuration. A merge configuration is a set of merge ex-
pressions, which defines for each query Qi in a given set
of queries if the MASTs are merged or not: Qi+j is a merge
expression which states that the MASTs of Qi and Qj are mer-
ged, while {Qi, Qj} is a set of two merge expressions which
state that the MASTs are not merged. Thus, the most simple
merge expression is a single query Qi. For example, for a set
individual queries is {Q1, Q2, Q3}, {Q1+2, Q3} is one poten-
tial merge configuration which holds two merge expressions
where Q1 and Q2 are merged into one MAST. The problem
statement for cost-based merging can thus be re-formulated
to find the merge configuration which results in minimal
data-redundancy for all queries in the workload W without
sacrificing data-locality.

The search space for all merge configuration for n queries
in a given workload W is the same as counting the number
of non-empty partitions of a set which is defined by the Bell
number B(n) as follows [11]:

Bn −B0 =

n∑
k=1

S(n, k)

S(n, k) is the Stirling number of the second kind [11],
which counts the number of ways to partition a set of n
elements into k nonempty subsets. Our first merge phase re-
duces the search space, since queries that are contained in
other queries are merged (i.e. removed from the workload),
which reduces n in the formula above. For example, for TPC-
DS we can reduce the MASTs for 99 queries to 17 MASTs (i.e.,
connected components) after the first merging phase. Howe-
ver, for huge workloads the search space is typically very big
after the first merging phase.

Therefore, we use dynamic programming for efficiently
finding the optimal materialization configuration for a gi-
ven workload W . We can use dynamic programming since
the optimality principle holds for merge configurations: Let
M be an optimal merge configuration for queries {Q1, Q2,
..., Qn}. Then, every subset MS of M must be an optimal
merge configuration for the queries it contains. To see why
this holds, assume that the merge configuration M contains
a subset MS which is not optimal. That is, there exists
another merge configuration MS′ for the queries contained
in MS with strictly lower data-redundancy. Denote by M ′

the merge configuration derived by replacing MS in M by
MS′ . Since M ′ contains the same queries as M , the data-
redundancy of M ′ is lower than the data-redundancy of M .
This contradicts the optimality of M .

We execute dynamic programming to find the optimal
merge configuration with n queries. In our dynamic pro-
gramming algorithm, to find the optimal merge configura-
tion for level l (i.e., with l queries), we execute a binary
merge step of an optimal merge configuration of level l − 1
with one individual query. Thus, in total dynamic program-
ming must analyze 2n different merge configurations. Moreo-
ver, a binary merge step must enumerate all possible merge
configurations of size l which can be constructed from both

{Q1} {Q2} {Q3}

{Q1+2} {Q1+3} {Q2+3}

{Q1+2,Q3}

Level%1:%

Level%2:%

Level%3:%

{Q1,Q2},{Q1,Q3},{Q2,Q3}

Selected'Configura0ons:' Other'Configura0ons:'

�

{Q1+2+3},{Q1+3,Q2},{Q1,Q2+3}

Figure 6: Enumerating Merge Configurations

inputs. Each binary merge step for level l has to analyze
maximally l resulting merge configurations. For example, if
we want to enumerate all merge configurations of level l = 4
which result from merging one merge configuration of level
l = 3 having two merge expressions {Q1+2, Q3} and a query
Q4, we have to enumerate three resulting merge configura-
tions {Q1+2, Q3, Q4}, {Q1+2+4, Q3}, and {Q1+2, Q3+4} but
not for example {Q1+2+3+4}. Moreover, memoizing analyzed
merge configurations also helps to prune the search space
because the same merge configuration might be enumerated
by different binary merge steps. For all merge configurations,
the binary merge step has to check if the merge configuration
is valid (i.e., no cycle occurs in the MAST). Finally, estima-
ting the size for a merge configuration is done by estimating
the size for each MAST separately (see Section 3) and then
summing up the individual estimated sizes.

Example: Figure 6 shows an example of our dynamic pro-
gramming algorithm for enumerating merge configurations
for three queries. The left hand side shows the selected mer-
ge configurations whereas the right hand side shows the
other enumerated merge configurations per level. In this
example, the optimal merge configuration of the third le-
vel {Q1+2, Q3} builds on the optimal merge configuration
{Q1+2} of the second level.

5. EXPERIMENTAL EVALUATION
In this section we report our experimental evaluation of

the techniques presented in our paper. In our experiments we
used the TPC-H benchmark (8 tables without skew and 22
queries) as well as the TPC-DS benchmark (24 tables with
skew and 99 queries). The goal of the experimental evaluati-
on is to show: (1) the efficiency of parallel query processing
over a PREF partitioned database (Section 5.1), (2) the costs
of bulk loading a PREF partitioned database (Section 5.2),
(3) the effectiveness of our two automatic partitioning de-
sign algorithms: schema-driven (SD) and workload-driven
(WD) (Section 5.3), and (4) the accuracy of our redundan-
cy estimates and the runtime needed by these algorithms
under different sampling rates (Section 5.4).

For actually running queries in parallel, we implemented
the PREF partitioning scheme and query processing capabi-
lities over PREF partitioned tables in an open source parallel
database called XDB [6].1 XDB is built as a middleware
over single-node database instances running MySQL. The
middleware of XDB provides the query compiler which par-
allelizes SQL queries and then uses a coordinator to execute
sub-plans in parallel over multiple MySQL nodes. Thus, the
complete query execution is pushed down into MySQL.

1https://code.google.com/p/xdb/

24

5.1 Efficiency of Query Processing
Setup: In this experiment, we have been executing all 22

TPC-H queries on a database with SF = 10. We did not use
a higher SF since this SF can already show the effects of
varying data-locality and data-redundancy. For the experi-
ment, we deployed XDB on an Amazon AWS cluster with 10
EC2 nodes (m1.medium) which represent commodity machi-
nes with low computing power. Each m1.medium EC2 node
has 1 virtual CPUs (2 ECUs), 3.75 GB of RAM and 420 GB
of local instance storage. Each node was running the follo-
wing software stack: Linux, MySQL 5.6.16, and XDB using
Java 8.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Total Runtime

T
im

e
 (

in
 s

e
co

n
d
s)

Classical
SD (wo small tables)

SD (wo small tables, wo redundancy)
WD (wo small tables)

Figure 7: Total runtime of all TPC-H queries

Results: For partitioning the TPC-H database, we com-
pare the following variants where Table 1 shows the resulting
data-locality DL and data-redundancy DR for all variants:
• Classical Partitioning (CP): This represents the clas-

sical partition design in data warehousing [12], where
one manually selects the biggest table LINEITEM and
co-partitions the biggest connected table ORDERS to
hash partitioned them on their join key. Moreover, all
other tables are replicated to all nodes.
• SD (wo small tables): This represents our SD algo-

rithm where we remove small tables (i.e., NATION,
REGION, and SUPPLIER) from the schema before app-
lying the design algorithm and replicate those tables
to all 10 nodes (as discussed in Section 3.1). The SD
design algorithm then suggests to use the LINEITEM

table as seed table.
• SD (wo data-redundancy, wo small tables): Compared

to the variant before, we additionally disallow data-re-
dundancy for all non-replicated tables. For this vari-
ant, the SD design algorithm suggests to use two seed
tables (PART and CUSTOMER) where LINEITEM is PREF

partitioned by ORDERS, and ORDERS by CUSTOMER, whi-
le PARTSUPP is PREF partitioned by PART.
• WD (wo small tables): Our workload-driven partiti-

on design merges all 22 queries into 4 connected com-
ponents in the first merge phase and then it is redu-
ced to 2 connected components by our second cost-
based merge phase: one connected component has 4
tables where CUSTOMER is the seed table (while ORDERS,
LINEITEM, and PART are PREF partitioned) and the other
connected component has also 4 tables where PART is
the seed table (while PARTSUPP, LINEITEM, and ORDERS

are PREF partitioned).
Figure 7 shows the total runtime of all TPC-H queries.

For all variants, we excluded the runtime of queries 13 and
22 since these queries did not finish within 1 hour in MySQL
using any of the partitioning configurations (due to expensi-
ve remote operations). In fact, when using our optimizations
that we presented in Section 2.2, we can rewrite query 13

Variant# DL DR

Classical 1.0 1.21
SD (wo small tables) 1.0 0.5
SD (wo small tables,wo data-red.) 0.7 0.19
WD (wo small tables) 1.0 1.5

Table 1: Details of TPC-H Queries

which uses a left outer join. After rewriting this query fi-
nishes in approximately 40s. The total runtime shows that
the partitioning configuration suggested by WD (wo small
tables) outperforms all other variants. Moreover, both SD
variants also outperform CP .

For the TPC-H schema, we found that CP represents the
best partitioning configuration with minimal total runtime
for all queries when not using PREF. Thus, CP in this ex-
periment can be seen as an lower bound for existing design
algorithms (such as [14, 18]) that are not aware of PREF.
Consequently, by comparing with CP , we indirectly compa-
re our design algorithms to those algorithms.

Figure 8 shows the runtime of each individual TPC-H que-
ry. The results show that whenever a query involves a remote
operation the runtime is higher (e.g., the runtime for que-
ry 17 and 20 for SD wo redundancy is worse than for SD
or WD). Furthermore, when no remote operation is needed
but data-redundancy is high in CP , then the query perfor-
mance also decreases significantly. This can be seen when we
compare the runtime of queries 9, 11, 16, 17 for CP with all
other schemes. For example, query 9 joins in total 6 tables
where 4 are fully replicated and PARTSUPP with 8m tuples is
one of them.

However, when compared to WD which has even a hig-
her total data-redundancy, we see that this has no negative
influence on the runtime of queries at all (which seems con-
tradictory to the result for CP). The explanation is that
for WD, each query has a separate database (i.e., only the
tables needed by that query) which results in a minimal
redundancy per query. In fact, the average data-redundancy
over all individual databases is even a little lower than for
SD (wo small tables). However, when taking the union of all
individual databases (of all queries) the data-redundancy is
even higher as for CP as shown in Table 1.

Finally, Figure 9 shows the effectiveness of our optimizati-
ons that we presented in Section 2.2. Therefore, we execute
different queries with (w) and without (wo) activating the-
se optimizations. As database, we use the TPC-H database
SF = 10 partitioned using SD (wo small tables). Figure
9 shows the execution time for the following three queries:
(1) the first query (left hand side) counts distinct tuples
in CUSTOMER (which has duplicates), (2) the second query
(center) executes a semi join of CUSTOMER and ORDERS (and
counts all customers with orders), and (3) the third que-
ry (right hand side) executes an anti join of CUSTOMER and
ORDERS (and counts all customers without orders). The exe-
cution times show that with our optimizations the runtime
gets efficiently reduced by approximately two orders of ma-
gnitude for query (1) and (2). Moreover, query (3) did not
finish within 1 hour without optimization while it only took
0.497 seconds to complete with optimization.

5.2 Costs of Bulk Loading
Setup: In this experiment, we bulk loaded the TPC-H

25

 0

 100

 200

 300

 400

 500

 600

 700

 800

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

T
im

e
 (

in
 s

e
co

n
d

s)

Classical

4
5
.0

6
7

8
.0

7
0

1
2
.4

4
0

7
.2

6
8

1
6
.0

0
8

1
1
.1

9
4

1
6
.5

1
5

1
1
0
.2

2
6

6
2
6
.8

4
0

7
6
.9

9
6

1
2
4
.6

3
6

3
6
.4

0
6

7
1
.9

5
4

2
4
.5

4
8

5
4
3
.8

9
8

1
9
1
.3

6
5

2
0
.1

2
6

1
5
.3

9
3

1
2
4
.5

2
2

5
5
.0

1
7

SD (wo small tables)

4
1
.0

4
2

0
.8

6
5

2
8
.0

2
6

1
3
.6

9
8

3
0
.0

1
8

9
.5

6
8

4
4
.9

4
9

5
4
.3

5
3

1
0
8
.2

4
3

1
8
.6

5
1

9
.5

5
4

5
5
.9

1
0

7
6
.7

5
6

2
3
.6

1
8

1
9
.5

0
3

5
3
.5

4
6

2
.7

6
0

1
6
.6

6
0

1
1
0
.3

9
9

6
1
.6

7
8

SD (wo small tables, wo redundancy)

4
3
.7

5
5

0
.8

1
3

9
.3

4
8

3
.1

4
9

1
0
.3

4
9

7
.3

5
9

1
2
.7

3
4

2
5
.3

0
8 9
3
.5

0
9

5
.8

7
5

9
.4

2
6

2
2
.8

3
2

8
1
.0

6
0

1
9
.6

0
4

2
.5

8
6

7
8
.2

8
6

1
1
.1

6
3

1
5
.6

2
8

4
3
6
.4

5
9

4
6
.7

4
7

WD (wo small tables)

4
5
.7

4
2

0
.8

5
1

1
0
.2

0
8

7
.8

9
3

1
1
.7

5
8

6
.9

1
7

1
2
.8

4
4

3
2
.5

1
6 1
0
6
.8

6
3

6
.8

7
3

9
.3

3
5

2
9
.1

0
0

9
.8

2
3

1
5
.8

7
4

2
.4

9
2

3
9
.7

5
0

1
2
.6

0
0

1
1
.3

1
6

1
2
.9

7
1

4
6
.9

9
3

Figure 8: Runtime for individual TPC-H queries

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

D
istinct

Sem
i join

Anti join

T
im

e
 (

in
 s

e
co

n
d
s)

w Optimizations

1
.0

7

1
.0

2

0
.5

0

wo Optimizations

1
0
1
.4

1
2
3
.7

A
b
o
rt

e
d

Figure 9: Effectiveness of Optimizations

database with SF = 10 into XDB. For the cluster setup, we
use the same 10 machines as in the experiment before (see
Section 5.1).

Results: We report the elapsed time of bulk loading a
partitioned TPC-H database for all partitioning schemes dis-
cussed in Section 5.1. While the Classical Partitioning (CP)
scheme uses only hash partitioning and replication, all other
schemes also use PREF partitioned tables that are bulk loa-
ded using the procedure described in Section 2.3. Thus, our
schemes (SD and WD) have to pay higher costs when inser-
ting a tuple into a PREF partitioned table since this requires a
look-up operation on the referenced table. However, CP has
a much higher data-redundancy (as shown already before)
and therefore has higher I/O costs.

The results in Figure 10 show that the total costs of SD
(wo small tables) are only a little higher when compared to
CP . In SD (wo small tables, wo redundancy) the costs are
a factor 2× higher compared to SD (wo small tables). The
reason is that the biggest table LINEITEM is PREF partitioned
where each tuple needs a look-up operation. When disallo-
wing redundancy in SD, it is a common pattern that the
biggest table is PREF partitioned. The reason is that the big-
gest table is likely to have outgoing foreign keys that can be
leveraged as partitioning predicates without adding redun-
dancy. Finally, WD has the highest bulk loading costs since
it pays the costs for higher redundancy and look-ups for bulk
loading PREF tables. When comparing Figure 7 (Execution
Costs) and Figure 10 (Loading Costs), we see that the bet-
ter query performance is often paid by higher bulk loading
costs, which is worthwhile in data warehousing scenarios.

5.3 Effectiveness of Partition Design
Setup: In this experiment, we use an Amazon EC2 ma-

chine of type m2.4xlarge with 8 virtual CPUs (26 ECUs),
68.4 GB of RAM and 2 · 840 GB of local instance storage
to run our partitioning algorithms. The partitioning design

 0

 50

 100

 150

 200

 250

 300

 350

 400

Bulk loading Time

T
im

e
 (

in
 s

e
co

n
d
s)

Classical
SD (wo small tables)

SD (wo small tables, wo redundancy)
WD (wo small tables)

Figure 10: Costs of Bulk Loading

algorithms was implemented in Java 8 and we did not paral-
lelize its computation. Compared to the experiments before,
we also use the TPC-DS database in this experiment to show
the effects of skew.

Results: We first report the actual data-locality and data-
redundancy resulting from partitioning a TPC-H and a TPC-
DS database of scaling factor SF = 10 into 10 partitions
(i.e., for 10 nodes). We did not use a higher SF since the
results for data-locality and data-redundancy would be very
similar for our design algorithms with a higher SF . After-
wards, we show how data-redundancy evolves, if we scale
the number of nodes and partitions from 1 to 100 for both
databases (using SF = 10 for all experiments). This shows
how well scale-out scenarios are supported.

TPC-H (10 partitions): For partitioning the TPC-H data-
base, we use all variants shown for the first experiment in
Section 5.1. Figure 11(a) shows the data-locality and the
actual data-redundancy, which results for the different va-
riants shown before. Additionally, we added to two baseli-
nes: All Replicated (i.e., all tables are replicated) and All
Hashed (i.e., all tables are hash partitioned on their prima-
ry key). While All Replicated (AR) achieves perfect data-
locality (DL = 1) by full data-redundancy (DR = 9 = n−1)
where n = 10 is the number of nodes, All Hashed (AH)
has no data-redundancy (DR = 0) but at the same ti-
me achieves no data-locality (DL = 0). Same as All Re-
plicated, CP also achieves perfect data-locality (DL = 1)
with less but still a high data-redundancy. Our design algo-
rithms also achieve high data-locality, however with much
less data-redundancy. For example, SD (wo small tables)
achieves perfect data-locality (DL = 1) with very little
data-redundancy (DR = 0.5) while WD has a slightly hig-
her data-redundancy (DR = 1.5). Moreover, when reducing
data-redundancy to DR = 0.19 by SD (wo small tables, wo
data-redundancy), we still achieve a reasonable data-locality
of DL = 0.7.

26

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

All H
ashed

All R
epl.

C
P

SD SD
 (w

o red.)

W
D

 0

 2

 4

 6

 8

 10

 12
D

a
ta

-L
o
ca

lit
y

D
a
ta

-R
e
d
u
n
d
a
n
cy

Data-Locality

0

1
.0

1
.0

1
.0

0
.7

0

1
.0

Data-Redundancy

0

9
.0

1
.2

1

0
.5

0

0
.1

9 1
.5

0

(a) TPC-H

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

All H
ashed

All R
epl.

C
P N

aive

C
P Ind. Stars

SD
 N

aive

SD
 Ind. Stars

W
D

 0

 2

 4

 6

 8

 10

 12

D
a
ta

-L
o
ca

lit
y

D
a
ta

-R
e
d
u
n
d
a
n
cy

Data-Locality

0

1
.0

1
.0

1
.0

0
.4

9 0
.6

5

1
.0

Data-Redundancy

0

9
.0

4
.1

5

1
.3

2

0
.2

3

0
.3

8 1
.4

0

(b) TPC-DS

Figure 11: Locality vs. Redundancy

TPC-DS (10 partitions): For partitioning the TPC-DS da-
tabase, we compare the following variants:

• CP (Naive and Individual Stars): This represents the
classical partition design as described before. For TPC-
DS we applied it in two variants: (Naive) where we only
co-partition the biggest table by its connected biggest
table and replicate all other tables, and (Individual
Stars) where we manually split the TPC-DS schema
into individual star schemata by separating each fact
table and all its dimension tables into an individual
schemata (resulting in duplicate dimension tables at
the cut) and then apply CP for each star.

• SD (Naive and Individual Stars, wo small tables): For
SD we removed 5 small tables (each with less than
1000 tuples) and applied the SD algorithm in the two
variants described before: (Naive) where we we apply
the SD algorithm to all tables, and (Individual Stars)
where we apply SD to each individual star.

• WD (wo small tables): We applied our WD algorithm,
which merged all 99 queries representing 165 individu-
al connected components (after separating SPJA sub-
queries) into 17 connected components (i.e., MASTs) in
the first merge phase and then by dynamic program-
ming we reduced them to 7 connected components (i.e.,
the number of fact tables).

Figure 11(b) shows the actual data-locality and data-re-
dundancy, which results for the different variants shown be-
fore, as well as for the two baselines (All Replicated and
All Hashed). Important is that CP has a higher data-re-
dundancy DR = 4.15 to achieve perfect data-locality as for
TPC-H. This is due to replicating more tables of the TPC-
DS schema. CP (individual stars) involves manual effort but
therefore has a much lower data-redundancy DR = 1.32.
Moreover, while SD introduces even less data-redundancy
(DR = 0.23), it also achieves a much lower data-locality

(DL = 0.49) in its naive variant. SD individual stars miti-
gates this with almost the same DR and DL = 0.65. Finally,
our WD algorithm results in perfect data-locality (without
any manual effort) by adding a little more data-redundancy
(DR = 1.4) compared to CP (individual stars).

TPC-H and TPC-DS (1-100 partitions): The goal of this
experiment is to show the effect of scale-out on the data-
locality and data-redundancy of all schemes discussed befo-
re. In this experiment, we partition the TPC-H and TPC-DS
database of SF = 10 into 1−100 partitions. For partitioning
we compare the best SD and the WD variant to the best
CP variant of our previous experiments. We do not show
both baselines All Replicated and All Hashed. While for All
Replicated DR would be linearly growing (i.e., DR = n),
All Hashed always has DR = 0. Figure 12 shows the resul-
ting data-redundancy (DR) for TPC-H and TPC-DS: The
best CP scheme has a DR which is growing slower than All
Replicated but has still a linear growth rate. WD and SD
have a sub-linear growth rate, which is much lower for big
numbers of nodes. Consequently, this means for CP that
each individual node has to store more data as for the other
schemes when scaling-out. Thus, scaling-out scenarios are
not well supported in CP since the performance of query
processing will decrease. Note that here we only show data-
redundancy, since one can easily reason that data-locality
will not change with varying number of nodes for all sche-
mes. Therefore, since the data-redundancy of our approach
grows much slower compared to CP , and their data-locality
remains unchanged, it means that increasing number of no-
des will have a more positive effect on query processing in
our approach compared to the CP scheme.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

D
a
ta

-R
e
d
u
n
d
a
n
cy

Number of Nodes

CP (wo small tables)
SD (wo small tables)
WD (wo small tables)

(a) TPC-H

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

D
a
ta

-R
e
d
u
n
d
a
n
cy

Number of Nodes

CP (Individual Stars)
SD (Individual Stars)
WD (wo small tables)

(b) TPC-DS

Figure 12: Varying # of Partitions and Nodes

5.4 Accuracy vs. Efficiency of Partitioning
Setup: We use the same setup as in the experiment before

(see Section 5.3).

Results: In this experiment, we show the accuracy of our
data-redundancy (DR) estimates when partitioning a TPC-
H data-base (SF = 10, wo skew) and a TPC-DS database

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100
 0

 200

 400

 600

 800

 1000

E
rr

o
r

R
u
n
tim

e
 (

in
 s

e
co

n
d
s)

Sampling Rate (in %)

Error (TPC-H)
Time (TPC-H)

Error (TPC-DS)
Time (TPC-DS)

Figure 13: Accuracy vs. Runtime (SD)

(SF = 10, w skew) for varying sampling rates (i.e., 1 −
100%). For showing accuracy, we calculate the approxima-
tion error by |Estimated(DR)−Actual(DR)|/Actual(DR).
Moreover, we also analyze the runtime effort under different
sampling rates (which includes the runtime to build histo-
grams from the database). Figure 13 shows the results of this
experiment for the SD (wo small tables) variant. We can see
that a small sampling rate of 10% results in a very low appro-
ximation error of about 3% for TPC-H and 8% for TPC-DS
while the runtime effort is acceptable since it only needs to
be executed once (101s for TPC-H and 246s for TPC-DS).
The difference in approximation error between TPC-H and
TPC-DS can be accounted for by the difference in the data
distribution of these two benchmarks. While TPC-H is uni-
formly distributed, TPC-DS is highly skewed, which results
in higher approximation error . The results of WD are not
shown in Figure 13) since it has the same approximation
error as SD. Moreover, the runtime of WD is dominated by
the merge phase which leads to approximately a factor of
10× increase compared to SD.

6. RELATED WORK
Horizontal Partitioning Schemes for Parallel Database Sys-

tems: Horizontally co-partition large tables on their join keys
was already introduced in the 1990’s by parallel database
systems such as Gamma [8] and Grace [10] in order to avo-
id remote join operations. Today co-partitioning is getting
even more important for modern parallel data management
platforms such as Shark [10] in order to avoid expensive
shuffle operations in MapReduce-based execution engines
since CPU performance has grown much faster than net-
work bandwidth [19]. However, in complex schemata with
many tables, co-partitioning on the join key is limited since
only subsets of tables can be co-partitioned which share the
same join key. Reference partitioning [9] (or REF partitioning
for short) is an existing partitioning scheme to co-partition a
table by another table referenced by an outgoing foreign key
(i.e., referential constraint). Using REF partitioning, chains
of tables can be co-partitioned based on outgoing foreign
keys . However, REF partitioning does not support incoming
foreign keys. Our PREF partitioning generalizes REF to use
an arbitrary equi-join predicate as partitioning predicate.
Another option to achieve a high-data-locality for joins is
to fully replicate tables to all nodes in a cluster. However,
when fully replicating tables data parallelism typically de-
creases, since the complete query is routed to one copy and
executed locally. Simple Virtual Partitioning (SVP) [4] and
Adaptive Virtual Partitioning (AVP) [13] are two techniques
that achieve data parallelism for fully replicated databases
by splitting a query into sub-queries which read only subsets
(i.e., virtual partitions) of the data by adding filter predica-

tes. Compared to PREF, for multi-way joins SVP and AVP
can only add a predicate to at most two co-partitioned ta-
bles which results in expensive full table scans for the other
tables in the join path. Moreover, for modern data manage-
ment platforms with a huge number of (commodity) nodes
and large data sets full replication is also not desirable.

Automatic Design Tuning for Parallel Database Systems:
While there exists a lot of work in the area of physical de-
sign tuning for single node database system, much less work
exists for tuning parallel database systems [17, 16, 7, 14,
18]. Especially, for automatically finding optimal partitio-
ning schemes for OLAP workloads, we are only aware of
the a few approaches (e.g., those described in [14, 18, 20]).
Compared to our automated design algorithms that build
on PREF, these approaches rely only on existing partitioning
schemes (such as hash, range-based, round-robin) as well
as replication and decide which tables to co-partition and
which to replicate. Moreover, the two approaches in in [14,
18] are tightly coupled with the database optimizer. Howe-
ver, in this paper we show that our partitioning design al-
gorithms, which are independent from any database optimi-
zer, can give a much better query performance by efficiently
using on our novel PREF scheme (even when not knowing
the workload in advance). Recently, different automatic de-
sign partitioning algorithms have been suggested for OLTP
workloads [17, 16, 7]. However, the goal of these approaches
is to cluster all data used by individual transactions on a
single node in order to avoid distributed transactions. For
OLAP, however, it is desirable to distribute the data needed
for one transaction (i.e., an analytical query) evenly to diffe-
rent nodes to allow data parallel processing. Thus, many of
the automatic design partitioning algorithms for OLTP are
not applicable for OLAP workloads.

7. CONCLUSIONS AND OUTLOOK
In this paper, we presented PREF, a novel horizontal parti-

tioning scheme, that allows to co-partition a set of tables by
a given set of join predicates by introducing duplicates. Fur-
thermore, based on PREF, we also discussed two automatic
partitioning design algorithms that maximize data-locality
while minimizing data-redundancy. While our schema-driven
design algorithm uses only a schema as input and derives
potential join predicates from the schema, the workload-
driven algorithm additionally uses a set of queries as in-
put. Our experiments show, that while the schema-driven
algorithms works reasonably well for small schemata, the
workload-driven design algorithm is more efficient for com-
plex schemata with a bigger number of tables.

One potential avenue of future work is to adopt our auto-
matic partitioning design algorithms to consider data-locality
also for other operations than joins only (e.g., aggregations).
Moreover, it would also be interesting to adopt our partitio-
ning design algorithms to dynamic data (i.e., updates) and
for mixed workloads (OLTP and OLAP) as well as for pure
OLTP workloads. We believe that our partitioning design
algorithms can also be used to partition schemata for OLTP
workloads (when we disallow data-redundancy for all tables)
since tuples that are used by a transaction can typically be
described by a set of join predicates. Finally, partition pru-
ning for PREF is another interesting avenue of future work.

28

8. REFERENCES

[1] Cloudera Impala. http://www.cloudera.com/content/
cloudera/en/products-and-services/cdh/impala.html.

[2] TPC-DS. http://www.tpc.org/tpcds/.
[3] TPC-H. http://www.tpc.org/tpch/.

[4] F. Akal, K. Böhm, and H.-J. Schek. OLAP Query
Evaluation in a Database Cluster: A Performance Study on
Intra-Query Parallelism. In ADBIS, pages 218–231, 2002.

[5] C. Binnig, N. May, and T. Mindnich. SQLScript: Efficiently
Analyzing Big Enterprise Data in SAP HANA. In BTW,
pages 363–382, 2013.

[6] C. Binnig, A. Salama, A. C. Müller, E. Zamanian,
H. Kornmayer, and S. Lising. XDB: a novel database
architecture for data analytics as a service. In SoCC,
page 39, 2013.

[7] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden.
Schism: a Workload-Driven Approach to Database
Replication and Partitioning. PVLDB, 3(1):48–57, 2010.

[8] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The Gamma
Database Machine Project. IEEE Trans. Knowl. Data
Eng., 2(1):44–62, 1990.

[9] G. Eadon, E. I. Chong, S. Shankar, A. Raghavan,
J. Srinivasan, and S. Das. Supporting table partitioning by
reference in Oracle. In SIGMOD Conference, pages
1111–1122, 2008.

[10] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An Overview
of The System Software of A Parallel Relational Database
Machine GRACE. In VLDB, pages 209–219, 1986.

[11] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete
Mathematics: A Foundation for Computer Science.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 1994.

[12] H. Herodotou, N. Borisov, and S. Babu. Query
optimization techniques for partitioned tables. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2011,
Athens, Greece, June 12-16, 2011, pages 49–60, 2011.

[13] A. A. B. Lima, M. Mattoso, and P. Valduriez. Adaptive
Virtual Partitioning for OLAP Query Processing in a
Database Cluster. JIDM, 1(1):75–88, 2010.

[14] R. V. Nehme and N. Bruno. Automated partitioning design
in parallel database systems. In SIGMOD Conference,
pages 1137–1148, 2011.

[15] M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems, Third Edition. Springer, 2011.

[16] A. Pavlo, C. Curino, and S. B. Zdonik. Skew-aware
automatic database partitioning in shared-nothing, parallel
OLTP systems. In SIGMOD Conference, pages 61–72, 2012.

[17] A. Quamar, K. A. Kumar, and A. Deshpande. SWORD:
scalable workload-aware data placement for transactional
workloads. In EDBT, pages 430–441, 2013.

[18] J. Rao, C. Zhang, N. Megiddo, and G. M. Lohman.
Automating physical database design in a parallel
database. In SIGMOD Conference, pages 558–569, 2002.

[19] W. Rödiger, T. Mühlbauer, P. Unterbrunner, A. Reiser,
A. Kemper, and T. Neumann. Locality-Sensitive Operators
for Parallel Main-Memory Database Clusters. In ICDE,
2014.

[20] T. Stöhr, H. Märtens, and E. Rahm. Multi-Dimensional
Database Allocation for Parallel Data Warehouses. In
VLDB, pages 273–284, 2000.

[21] F. M. Waas. Beyond Conventional Data Warehousing -
Massively Parallel Data Processing with Greenplum
Database. In BIRTE (Informal Proceedings), 2008.

[22] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
Inc., 1st edition, 2009.

[23] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica. Shark: SQL and rich analytics at scale. In
SIGMOD Conference, pages 13–24, 2013.

APPENDIX
A. ESTIMATING REDUNDANCY

As discussed in Section 2, predicate-based reference par-
titioning might result in some redundancy in PREF parti-
tioned tables. Since seed tables in our partitioning design
algorithms will never contain duplicate tuples (and thus red-
undancy), in order to estimate the size of a database after
partitioning, the expected redundancy in all tables which
are PREF partitioned must be estimated. In the following,
we explain our probabilistic method to estimate the size of
a given PREF partitioned table.

Redundancy is cumulative, meaning that if a referenced
table in the PREF scheme contains duplicates, the referencing
table will inherit those duplicates as well. This can be best
explained by the example in Figure 2. Table ORDERS has two
copies of the tuple with orderkey=1. Table CUSTOMER, which
is PREF partitioned by ORDERS inherits this duplicate (i.e.,
customer withcustkey=1 is therefore stored redundantly in
partition 1 and 3). In other words, PREF partitioning can be
viewed as walking a tree, where nodes are the tables (the
seed table being the root) and each referenced table is the
parent of its referencing table(s). The redundancy in the
parent table results in the redundancy in the child table.
Therefore, in order to estimate the redundancy in a PREF

table, we should take into account the redundancy of all the
tables along the path to the seed table.

To this end, we assign a redundancy factor (denoted by r)
to each edge in the MAST. To find the redundancy factor of
an edge, we use histogram of the join key in the referenced
table (whereas we can use sampling to reduce the runtime
effort to build histograms). For example, assume that we
want to estimate the size of the table ORDERS in Figure 2 af-
ter partitioning. For each value in column orderkey of table
LINEITEM, we calculate the expected number of duplicates
of the corresponding tuple in table ORDERS we expect after
partitioning (i.e. the number of partitions which contain a
copy of that tuple). The idea behind this method is that
tuples with lower frequency in the histogram are expected
to end up in fewer number of partitions (i.e. fewer duplica-
tes) as compared to tuples with higher frequency. Therefore,
by calculating the expected value of copies of each distinct
value in the join key of the referenced table, and then add
them all together, we can find an estimate of the size of the
referencing table after partitioning.

We now formally explain our method. Let the random
variable X denote the expected number of copies of a tuple
after partitioning, n represent the number of partitions and
f denotes the frequency of that tuple in the histogram. Note
that X can take any number between 1 and m = min(n, f):
X = 1 results when all references of that tuple happen to
be in the same partition, and therefore, no replica is needed.
On the other hand, X = min(N, f) is the maximum value,
since the number of copies of a tuple is either n (i.e. full
replication) or f , when f < n and each reference ends up
in a separate partition. The expected number of copies of a
tuple with frequency f is therefore as follows:

Ef,n[X] = 1·Pf,n(X = 1)+2·Pf,n(X = 2)+· · ·+m·Pf,n(X = m)

where Pf,N (X = x) is the probability that the tuple has
x copies (meaning that it will be replicated to x different

29

partitions, out of the totalN partitions). It can be calculated
as follows:

Pf,n(X = x) =

(
n
x

)
· x! · S(f, x)

nf

In the formula above, S(f, x) is the Stirling number of the
second kind, and is the number of ways to partition a set
of x distinguishable objects (tuples) into n non-empty indis-
tinguishable boxes (partitions). The numerator, therefore, is
the number of ways to choose x partitions out of total n par-
titions, i.e.

(
n
x

)
, and then to partition f tuples into these x

distinguishable partitions, which is why the Stirling number
is multiplied by x!. The denominator is the total number of
ways to put f distinct tuples into n distinct partitions.

The above mentioned formula requires a number of ex-
pensive recursions (because of the Stirling number). Since
Ef,n[X] depends only on f and n, the entire computation
can be done in a preprocessing phase. Therefore, instead of
actually calculating the expected number of copies for each
tuple in run-time, only a fast look-up in a pre-loaded table
is enough. Thus, the time complexity of finding Ef,n[X] in
run-time is O(1).

We are now ready to calculate the redundancy factor of
an edge in MAST. We define it as the after-partitioning size
of a table divided by its original size. Let Ve denote the set
of distinct values in the join key of the referenced table Ti

over its outgoing edge e to table Tj(for example,the distinct
values of column orderkey of table LINEITEM in Figure 2 is
{1, 2, 3}).

The redundancy factor is defined as follows:

r(e) =

∑
v∈Ve

E[v]

|Tj |

Note that r(e) can be ranged between two extremes: 1 (no
redundancy) and n (full redundancy). As mentioned before,
the after-partitioning size of a referencing table is not deter-
mined only by the redundancy factor of the immediate edge
coming from its referenced table, but also by the redundancy
factor of all the edges along the path from the seed table.

Finally, we can now estimate the after-partitioning size of
table Ti:

|TP
i | = |Ti| ·

∏
e∈path(TRF ,Ti)

r(e)

where path(TRF , Ti) consists of all the edges from TRF to
Ti in the MAST.

For example, assume that r(LINEITEM → ORDERS) turns
out to be 2, meaning that |ORDERSP | would be twice as big
as its original size |ORDERS|. Now, if r(ORDERS → CUSTOMER)
is 3, the after-partitioning size of table CUSTOMER would be
estimated to be 2 · 3 = 6 times its original size.

30

