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Abstract—Market-based IaaS offers such as Amazon’s EC2
Spot Instances represent a cost-efficient way to operate a cluster.
Compared to traditional IaaS offers which follow a fixed pricing
scheme, the per hour price of Spot Instances changes dynam-
ically, whereas the Spot price is often significantly less when
compared to On-demand and even the Reserved Instances. When
deploying a Parallel Data-Processing Engine (PDE) on a cluster
of Spot Instances a major obstacle is to find a bidding strategy
that is optimal for a given workload and satisfies user constraints
such as the maximal budget. Moreover, another obstacle is that
existing PDEs implement rigid fault-tolerance schemes which
do not adapt to different failure rates resulting from different
bidding strategies.

In this paper, we present a novel PDE called Spotgres that
tackles these issues. Spotgres extends a typical PDE architecture
by (1) a constraint-based bid advisor which finds an optimal
cluster configuration (i.e., a set of bids on Spot Instances) and (2)
a cost-based fault-tolerance scheme that takes various parameters
(such as the mean time between failures and query statistics) into
account to efficiently execute analytical queries over the set of
Spot Instances that have a varying failure rate.

I. INTRODUCTION

Motivation: Market-based IaaS offers such as Amazon’s
EC2 Spot Instances represent a cost-efficient way to operate
a cluster. Compared to On-demand and Reserved Instances
which follow a fixed pricing scheme, the per hour price of Spot
instances changes dynamically, whereas the Spot price is often
significantly less when compared to On-demand and even
the Reserved Instances. In order to rent one or several Spot
instances, the user places a bid which includes the number of
instances of one particular machine type and the maximal per
hour price that the user is willing to pay (called bid price). If
the bid price exceeds the Spot price for the given machine type,
Amazon will launch the instance(s) for the user. In that case,
Amazon charges the user the current Spot price and not the bid
price. Moreover, Spot Instances are billed in the granularity of
an hour (using the Spot price of the last full hour if an instance
is running longer than an hour). However, if the Spot price
exceeds the bid price, Amazon could and will most likely kill
all instance(s) without signaling the user beforehand, whereas
Amazon does not charge for the last non-complete hour of
uptime. Consequently, the availability of Spot Instances and
the actual cost of the complete cluster are directly linked to
the bidding strategy (i.e., the cost the user is willing to spend
per hour per node) and the actual price.

Figure 1 shows the Spot price history in the AWS man-
agement console for an EC2 machine of type c1.medium
for one availability region (eu-west-1c) over the duration of
one month. Compared to the On-demand price of c1.medium
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Fig. 1. Spot Price History (1 Month)

machines, which is approx. 13 cent per hour in that availability
region, the Spot price is significantly less most of the time
varying between 1 and 3 cent per hour. However, we can also
see some individual spikes which range up to 50 cent per hour.
Thus, if the user follows a strategy to place a bid which is only
a little above the current Spot price (e.g.4 cent per hour), she
minimizes the risk of paying a high per hour price but the
user will (most likely) lose her instances when spikes occur.
On the other hand, if the user bids a high price (e.g., above
the highest spike), she minimizes the risk of losing an instance
but increases the risk of paying a per hour price which reflects
one of the spikes.

Parallel Data-Processing Engines (PDEs) such as parallel
databases (e.g., SAP HANA [3], Greenplum [12] or Terradata
[8]) or other modern parallel data management platforms (e.g.,
Hadoop [13], Scope [18], Shark [14]) are used today to analyze
large amounts of data in clusters of shared-nothing machines.
When deploying a Parallel Data-Processing Engine (PDE) on
a cluster of Spot Instances a major obstacle is to find a bidding
strategy that is optimal for a given workload and satisfies user
constraints such as the maximal budget. Currently there is no
support from Amazon to create a set of bids for a cluster of
Spot Instances. Thus, the user has to manually find the best
set of bids for her constraints and constantly needs to adapt
her set of bids (i.e., re-bid) on Spot Instances if individual
instances fail.

Moreover, another obstacle is that existing PDEs implement
rigid fault-tolerance schemes to deal with mid query-failures.
Whereas traditional parallel databases restart a query from
scratch (on a replica) if a mid-query failure occurs, modern
PDEs materialize intermediates to implement a more fine-
grained scheme which restarts a sub-query from the last
checkpoint. However, no PDE adaptively adjusts its execution
strategy to a varying mean time between failures (MTBF)
and other characteristics of the workload (e.g., query runtime
and materialization costs for intermediates).
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Contributions: In this paper, we represent a novel PDE
called Spotgres that tackles the before mentioned issues. Spot-
gres extends a typical PDE architecture by (1) a constraint-
based bid advisor which finds an optimal cluster configuration
(i.e., a set of bids) based on a given set of constraints and
(2) an cost-based fault-tolerance scheme that takes various
parameters (such as MTBF and query statistics) into account
to efficiently execute analytical queries in parallel over the set
of launched Spot Instances.

The constraint-based bid advisor of Spotgres supports the
user to specify constraints on the resources in the cluster as
well as a quality constraint on the maximal budget or the
minimal availability. On the one hand, if the maximal budget is
given as a constraint, the bid advisor will propose a set of bids
which aims to maximize the availability. On the other hand, if
the minimal availability per node is given as a constraint, the
bid advisor will propose a set of bids which aims to minimize
the total costs per hour for the given availability.

The cost-based fault-tolerance scheme of Spotgres imple-
ments an efficient execution strategy for the set of launched
Spot Instances. Therefore, Spotgres constantly collects statis-
tics (such as the MTBF) for the individual machine types in the
cluster and finds the best materialization strategy for a given
query that minimizes the runtime under mid-query failures.

Our experiments show that the bid advisor effectively
meets the given constraints. For example, the bid advisor
suggests a cluster of Spot Instances which has an availability
of 98% for only 25% of the costs of the cheapest On-demand
cluster. Moreover, our cost-based fault-tolerance scheme
shows that even with high failure rates (e.g., low MTBFs)
queries can be executed more efficiently compared to other
existing fault-tolerance schemes.

Outline: In Section II, we first present the architecture
of Spotgres and discuss how the bid advisor and the cost-
based fault-tolerance scheme are integrated into a typical
PDE architecture. In Section III we discuss the details of the
bid advisor which uses constraint programming to solve the
optimization problem discussed above. Moreover, in Section
IV we present the details of our cost-based fault-tolerance
scheme. Finally, Section V shows our experimental evaluation
and Section VI summarizes related work.

II. SPOTGRES ARCHITECTURE

Figure 2 shows the architecture of our Spotgres PDE
along two important aspects: (1) the cluster configuration
using constraints and (2) the cost-based fault-tolerant query
execution. In Figure 2, the blue arrows represent the
control-flow of the cluster configuration, whereas the green
arrows represent the control-flow of the query execution. In
the following, we explain details of the individual components.

Bid Advisor: The most important component for the cluster
configuration is the bid advisor which takes a set of input
constraints from the administrator (e.g., resource constraints)
and derives an optimal cluster configuration represented as
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Fig. 2. Spotgres Architecture

a set of bids on Spot Instances (whereas each bid includes
the machine type, the number of instances, and the bid
price). Moreover, the administrator must define an objective
function to derive a cluster configuration. Currently Spotgres
supports only two objective functions: either maximizing
the availability of each cluster node for a given total budget
or minimizing the cost for the complete cluster for a given
availability per node. The input constraints and the objective
function are translated into a constraint program by the
Constraint solver which then finds an optimal set of bids.
Therefore the solver uses the Spot price histories (of a given
window) to solve the optimization problem. The suggested
cluster configuration is used by the cluster monitor (which is
a part of the master node) to launch the Spot Instances.

Master Node: The master node hosts components for com-
piling and executing queries as well as monitoring compute
nodes (which actually execute sub-queries). The Fault-tolerant
Compiler takes a query from the end user and finds a plan
that materializes a subset of intermediate results such that the
runtime of the query is minimized under mid-query failures.
For selecting a subset of intermediate results that should
be materialized, Spotgres implements a cost model which
uses query statistics (i.e., histograms of the data) and cluster
statistics in order to find an optimal fault-tolerant plan that
minimizes the runtime under mid-query failures. For query
execution, the Query Monitor gets the fault-tolerant plan and
splits it into sub-plans that are executed by the compute
nodes in parallel over different partitions and materializes
their output to the storage layer (EBS in our case) for fault-
tolerance. For monitoring the complete cluster, the Cluster
Monitor pings all individual compute nodes. In case of a
node failure, Cluster Monitor uses the bid advisor to start new
machines, i.e., to re-bid for failed Spot Instances. Moreover,
the cluster monitor also updates the cluster statistics such as
mean time between failures (MTBF) that are used by the fault-
tolerant query compiler to select the subset of intermediates
that should be materialized.

Since the Master Node and the Bid Advisor are central
components in Spotgres, they are deployed on an On-Demand
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Instance such that we do not need to deal with fault-tolerance
in these nodes at all.

Compute Nodes: The compute nodes are executing
sub-queries (i.e., sub-plans) over individual partitions and
materializing the result of the sub-plans to the attached EBS
volumes of the storage layer. All compute nodes are deployed
on Spot Instances which means that these nodes can fail
during query execution.

Storage Layer: Spotgres horizontally partitions a database
D into n partitions Pi with i = 1...n (i.e., D = [P1, ..., Pn]
and replicates individual partitions Pi ∈ D to k different
nodes for fault-tolerance. Each individual copy of a partition
is stored to a separate EBS volume. That way, if a node in
the cluster fails, the cluster monitor can reattach the EBS
volume(s) of the failed instance to a new (or an already
running) instance. Afterwards, a failed sub-plan can be
restarted from the most recent intermediate result that was
materialized to an EBS volume.

III. CONSTRAINED-BASED BID ADVISOR

A. Overview

In this section, we give an overview of the bid advisor which
suggests a cluster configuration (i.e., a set of bids) based on
the given input constraints. The input constraints of the user
are shown in the following table:

Input Description Constr.Type
CU Minimal number of Amazon

Compute Units in the cluster
Resource

RAMcu Minimal RAM per CU in the
cluster

Resource

B Maximal budget for the com-
plete cluster

Quality

Acu Availability per CU Quality

The first two constraints are called Resource constraints,
which define functional aspects of the cluster: i.e., the com-
putational power of the complete cluster in compute units
CU and the minimal main memory per CU . In order to
specify the computational power per machine type, Amazon
provides an abstract measure called Compute Unit CU (i.e.,
for each machine type the number of CUs is defined). That
way, a CU can be seen as a virtual processor that provides
a fixed computational power. Thus, in order to define the
computational power of the complete cluster, the user gives the
minimal number of CUs in the cluster as an input constraint.
The second input constraint is the minimal RAM per CU
denoted as RAMcu. These two constraints heavily depend on
the expected workload.

The other two constraints in the table before are called
Quality constraints, which define non-functional aspects of
the cluster: i.e, the maximal budget B (i.e., an upper bound
for the actual cluster cost) and the minimal availability per
compute unit Acu. Out of these two constraints, the user
must select one, whereas the other variable is used as the

Acu=%99%%

Acu=%98%%

Fig. 3. Derive the Bid Price for a Machine Type

objective function: i.e., if the maximal budget B is provided
as an input constraint, the objective function is to maximize
the availability Acu, whereas if the availability Acu per CU
is provided as an input constraint, minimizing the maximal
budget B is the objective function.

In the following, we discuss both cases in detail.

B. Minimizing Cluster Cost

In the first case, the user provides the minimal availability
per compute unit Acu as quality constraint as well as the two
resource constraints: CU and RAMcu. Afterwards, the bid
advisor executes the following steps: (1) filter all machine
types T = [t1, . . . , tn] that qualify for the given RAMcu

constraint, (2) derive the bid prices P = [p1, . . . , pn] per
machine type ti ∈ T to satisfy the given Acu and calculate
the average billed prices A = [a1, . . . , an] per machine type
ti ∈ T , and finally (3) find the optimal cluster configuration
using the constraint solver.

The first step is trivial since Amazon provides the number
of CU = [cu1, . . . , cun]s and the RAM per machine type
ti. The result is the vector T = [t1, . . . , tn] of machine types
that qualify for the given RAMcu constraint. For the second
step, the Spot price history per machine type ti ∈ T is used.
Figure 3 shows the price history for one machine type over
the last month (whereas the window we use for learning the
bid price is configurable). Based on the history and the given
Acu, we can derive a bid price bi that will (based on the
history) give us the desired availability for that machine type.
For example, in Figure 3 we set bi ≥ $0.03 to guarantee an
availability of Acu = 98%, whereas if we set bi ≥ $0.17 we
can achieve an availability of Acu = 99%. Moreover, we also
use the Spot price history to calculate the average prices A =
[a1, . . . , an] per machine type ti ∈ T for the learning windows
by dividing the history into intervals which have the same Spot
price. The average billed prices instead of the bid prices are
used to calculate the actual costs of a cluster configuration.

In order to find the optimal cluster configuration C =
[b1, . . . , bn] which is a vector of bids (one for each machine
type), Spotgres evaluates the constraint program as shown
in Listing 1. A bid bi = [xi, pi] on a machine type i is a
tuple which defines the number of instances xi and the bid
price pi. The constraint program in step (3) returns the vector
X = [x1, . . . , xn], whereas the bid prices P = [p1, . . . , pn]
for each machine type are returned already by step (2).

In the following, we explain the details of the constraint
program shown in Listing 1. The objective function obj
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Listing 1. Constraint Program
1 Minimize:
2 obj: a1 · x1 + . . . + an · xn + 0 · b1 + . . . + 0 · bn
3
4 Subject To:
5 cuConstraint: cu1 · x1 + . . . + cun · xn >= CU
6 lowerBound_1: r1 · b1 - x1 <= 0
7 upperBound_1: MinInt · b1 + x1 <= 0
8 . . .
9 lowerBound_n: rn · bn - xn <= 0

10 upperBound_n: MinInt · bn + xn <= 0
11
12 (activeInstance_1: b1 = 1
13 . . .
14 activeInstance_n: bn = 1)

calculates the total cluster costs based on the average prices
per machine type. The variable bi is a special variable which
is set to bi = 1 in order to indicate that machine type i must
be included in the cluster configuration by adding the optional
constraint activeInstance i which is needed for re-bidding if
some nodes in the cluster do not fail (see Section III-D). The
first constraint (i.e., cuConstraint) defines that there must
be in total at least CU compute units in the cluster where
cui is the number of compute units for machine type i. The
other constraints (i.e., lowerBound i and upperBound i)
represent bounds on the numbers of instances of machine type
i. These constraints can be used e.g for re-bidding to make
sure that instances that did not fail must be included in the
new cluster configuration again.

C. Maximizing Availability

Compared to the first case (in Section III-B) where we
minimize the total cluster costs, the second case has a maximal
budget as an input constraint and the objective function is to
maximize the availability per compute unit Acu. Since there
is no simple function that maps the average cost per machine
type to its actual availability, we apply a binary search over
the procedure shown in Section III-B. Thus, we start with
Acu = 50% and depending on the total cluster costs, we
either increase or decrease the availability to Acu = 75% or
Acu = 25% etc. until we find the highest value for Acu that
still satisfies the maximal budget B.

D. Optimizations and Variants

Diversity Optimization: One variant of the procedure in
Listing 1 is that we add a diversity constraint as shown below:

diffTypesConstraint: b1 + . . . + bn = k

This constraint can be used to force the solver to choose k
different machine types for the cluster configuration. Together
with the lowerBoundi and upperBoundi constraint the
total number for each of the k machine types can be defined.
The diversity constraint can be used for Spotgres cluster
configurations where partitions should be replicated. The
reason is that typically all instances of the same machine
type fail at the same time when using Spot Instances (i.e.,

when the Spot price exceeds the bid price). Thus, replication
only helps if data is copied to different machine types or the
same machine type with a higher bid price. Currently, setting
k ≥ 1 only returns k different machine types in the cluster
configuration. Returning the same machine type with a higher
bid price is an avenue for future work.

Uptime Optimization: Another variant is an optimization
that leverages the fact that a user is not charged for instances
which have an uptime of less than an hour. Therefore, we use
the cluster configuration we get from one of the procedures
described in Section III-B and III-C and add/subtract a cost-
tolerance to/from the given total cluster costs. We use that cost
tolerance as a new constraint for the constraint program shown
in Listing 1. Moreover, we change the objective function to
maximize the number of intervals where the uptime is less
than an hour. Thus, the main idea is to reduce the total cluster
cost by adding the cost tolerance (i.e., in the worst case we
are willing to pay a little more).

IV. COST-BASED FAULT-TOLERANCE

In this section, we present a high-level overview of our cost-
based fault-tolerance scheme. Compared to the existing fault-
tolerance schemes, our scheme selects a subset of intermedi-
ates (called materialization configuration) to be materialized
such that the query runtime is minimized under the presence
of mid-query failures taking the mean time between failures
(MTBF) per cluster node into account since the MTBF can
strongly vary over time.

The main goal of our cost-based fault-tolerance scheme
is for a given query to find an execution plan P and a
materialization configuration MP that minimizes the total
runtime of that query under mid-query failures. Moreover,
our cost-based fault-tolerance scheme is a fine-grained strategy
which restarts only sub-plans on nodes that actually failed.

In order to find an optimal plan, cost-based optimizers
typically enumerate different equivalent execution plans P and
apply a cost function to find the best plan with the minimal
runtime cost. However, they neither enumerate different ma-
terialization configurations for each plan nor do they consider
the costs for recovering from mid-query failures. Therefore,
we propose to change the cost-based optimizer to use an
enumeration procedure that finds the best combination of a
plan P and a materialization configuration MP with minimal
runtime under mid-query failures. We call this combination
[P,MP ] a fault-tolerant plan.

In the following, we give a high-level description of our
procedure findBestFTP lan(Q), which finds the best fault-
tolerant plan for a given query (see Figure 4): (1) First, our
procedure enumerates different fault-tolerant plans [P,MP ] for
the given query Q. (2) Second, for each enumerated fault-
tolerant plan, our procedure creates a collapsed plan P c where
all operators in MP that do not materialize their output are
collapsed into the next materializing operator. The idea of the
collapsed plan is to represent the granularity of re-execution
using these collapsed operators (i.e., if a collapsed operator has
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Fig. 4. Finding the best Fault-tolerant Plan

finished successfully it does not need to be re-executed again).
(3) Third, for a collapsed plan, all execution paths (i.e., paths
from each source to each sink in P c) are enumerated and (4)
the total cost TPt is estimated for each execution path Pt using
a cost function that takes statistics about the operators and the
cluster (e.g., the mean time between failures ) into account.
The path Pt with the maximal estimated total cost for a given
materialization configuration (called the dominant path of that
configuration) is selected. The total cost of the dominant path
represents the total runtime of the fault-tolerant plan. In Figure
4, for example, path Pt2 is the dominant path and thus the
estimated runtime for the given fault-tolerant plan [P,MP ]
would be 9.25s. To that end, our procedure finds an execution
plan P and a corresponding materialization configuration MP

which has minimal total costs under the presence of mid-query
failures.

In order to estimate the total cost of a path Pt under mid-
query failures, the cost function estimateCost requires that
the following statistics are given: The runtime costs tr(o) to
execute each operator o ∈ P and the costs tm(o) to materialize
the output of each operator o ∈ P . Both cost values can be
derived from cardinality estimates that are calculated by a cost-
based optimizer. Moreover, other parameters that are needed
for the cost estimation are the following cluster statistics: the
mean time between failures (MTBF) and the mean time to
repair (MTTR) for one cluster node, as well as the cluster
size (i.e, the number of nodes). In this paper, we assume that
all these parameters are given.

V. EXPERIMENTAL EVALUATION

In this section we report the results of our experimental
evaluation which shows (1) the effectiveness of our bid advisor
for different input constraints and different objective functions
(Section V-A), and (2) the effectiveness of our cost-based fault-
tolerance scheme by comparing the runtime of queries over
the TPC-H schema for different cluster configurations (Section
V-B).

In both experiments, we use the Spot price history of the

last 12 months ranging from 1st of September 2013 until 8th
of August 2014 for all 18 machine types where the price
history was available in that time frame. Moreover, we use the
following resource constraints as an input to the bid advisor:
CU ≥ 10 and RAMcu ≥ 1.5GB. Adding more CUs would
not change the results of the bid advisor since this has no
effect on the optimization problem.

A. Effectiveness of Bid Advisor

In this experiment, we show the effectiveness of our bid
advisor for two scenarios: Exp. 1a minimizes cluster costs
for a given availability (Figure 5) and Exp. 1b maximizes
the availability for a given budget (Figure 6). For finding
an optimal cluster configuration, we use one month of the
price history for learning and use the subsequent month for
testing. We repeat each experiment multiple times by shifting
the learning and testing window forward for one week until
the testing window reaches the end of the Spot price history
(mentioned before).

For Exp. 1a, we use the given availabilities of 0.8, 0.85,
0.9, and from 0.95 to 0.99 every 1% step. For Exp. 1b, we use
the given prices of 1%, 5%, 25%, 40%, 70%, 90%, and 100%
of the cheapest On-demand cluster that satisfies the given
resource constraints (i.e., CU ≥ 10 and RAMcu ≥ 1.5GB).
Moreover, we execute each experiment (1a and 1b) using
the diversity variant of our algorithm mentioned in Section
III-D; using the diversities of k = 1 and k = 3 (i.e., a
database without replication and one with replication factor
3). Moreover, for k = 3 we repeat Exp. 1a with the uptime
optimization enabled to analyze for potential cost savings
(Figure 7).

Exp. 1a - Minimizing Costs (Figure 5): Figure 5(a) and
5(b) compare the defined availability (i.e., the input constraint)
and the actual availability per node as well as the defined
availability and the actual total costs of the cluster (which
was the objective function in this experiment) for k = 1. Both
figures show the average as well as the the lower and upper
quartile for the Spot cluster. For the actual total costs of the
Spot cluster that we minimize in this experiment, we see that
the average costs are below $50 (compared to more than $300
for the cheapest On-demand cluster). For the actual availability
of the Spot cluster, we see that the average is very close to
the defined availability (i.e, the input constraint). However,
the lower and upper quartile show a high interquartile range
(IQR).

Figure 5(c) and 5(d) show the results for a diversity of
k = 3. The positive effect of k = 3 is that the average
actual availability gains when comparing to average actual
availability of k = 1. In fact, the average of the actual
availability is always higher than the defined availability
and has a much smaller IQR. However, the average total
costs for the Spot Cluster and the cheapest On-demand
cluster are rising both about $50. This is clear, since for
k = 3 the bid advisor must pick 3 different machine types
and can not compose the complete cluster only using the
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(a) Actual Cost (k=1) (b) Actual Avail. (k=1)

(c) Actual Cost (k=3) (d) Actual Avail. (k=3)

Fig. 5. Exp. 1a - Minimizing Cluster Costs (Avgs and Quartiles)

(a) Actual Cost (k=1) (b) Actual Avail. (k=1)

(c) Actual Cost (k=3) (d) Actual Avail. (k=3)

Fig. 6. Exp. 1b - Maximizing Availability (Avgs and Quartiles)

cheapest machine type. In the extreme case (i.e., for a defined
availability of Acu = 0.99) the total costs thus almost double
for the Spot cluster (i.e., $100 for k = 3 instead of $50 for
k = 1).

Exp. 1b - Maximizing Availability (Figure 6): In this
experiment, we set the maximal budget of the user for the
entire cluster as a constraint and analyze the actual costs of
the Spot cluster as well as the actual availability of each node
(which is the objective function in this experiment). If we
set the budget to 25% of the cheapest On-demand cluster,
we can see that we already get an actual average availability
per node of more than 0.96 for k = 1 (see Figure 6(b)) and
even 0.99 for k = 3 (see Figure 6(d)). Moreover, the actual
costs do not rise higher than 20% (i.e., $50) of the cheapest
On-demand cluster for k = 1 respectively 30% (i.e., $120)
for k = 3 on average even if we set the maximal budget to
100% of the cheapest On-demand cluster. The reason is that
the Spot price is typically much lower than the bid price if we
set the maximal budget to 100% of the cheapest On-demand
cluster. For the IQR, we see similar effects as for Exp. 1a.

(a) Actual Cost (k=3) (b) Actual Avail. (k=3)

Fig. 7. Exp. 1a with Uptime Optimization (Avgs and Quartiles)

Exp. 1c - Uptime Optimization (Figure 7): Finally, in
the last experiment we re-execute Exp. 1a with the uptime
optimization enabled for k=3 (whereas k = 1 shows similar
results). The results are shown in Figure 7. Compared to Figure
5(c) and 5(d) (i.e., the same experiment without the uptime
optimization), the most important difference is that the lower
quartile of the actual costs in this experiment is at $0 (i.e., in
the best case we do not pay anything for our cluster).

B. Effectiveness of Cost-based Fault-Tolerance

In this experiment we compare the overhead of different
existing fault-tolerance schemes to our cost-based scheme
when mid-query failures happen while executing queries. The
reported overhead in this experiment represents the ratio of the
runtime of a query under a given fault-tolerance scheme (i.e.,
including the additional materialization costs and recovery
costs) over the baseline execution time. The baseline execution
time for all schemes is the pure query runtime without addi-
tional costs (i.e., no extra materialization costs and no recovery
costs due do mid-query failures). Thus, if we report that a
scheme has 50% overhead, it means that the query execution
under mid-query failures using that scheme took 50% more
time than the baseline.

The fault-tolerance schemes, which we compared in this
experiment, are:

• all-mat: This represents the strategy of Hadoop, where
all intermediates are materialized to a fault-tolerant stor-
age medium. Moreover, for recovering a fine-grained
strategy is used (i.e., only sub-plans that fail are
restarted).

• no-mat (lineage): This represents the strategy of Shark,
where intermediates are not used to recover. Moreover,
lineage information is used to re-compute failed sub-
plans.

• no-mat (restart): This represents the strategy of a paral-
lel database, where intermediates are not used to recover.
Moreover, for recovering a coarse-grained strategy is used
(i.e.,the complete query plan is restarted once a sub-plan
fails).

• cost-based: This represents our cost-based strategy
that materializes intermediates based on a cost-model.
Moreover, for recovering a fine-grained strategy is used
(i.e., only sub-plans that fail are restarted).

In the following, we report the overhead of all these
strategies: (a) when running queries with varying runtime
for a fixed MTBF to show the effect of the fault-tolerance
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Fig. 8. TPC-H query 5 (Free operators 1-5)

strategies short- and long-running queries and (b) when
running the same query for different MTBFs to show the
effect of different cluster setups. For measuring the actual
runtime of queries under mid-query failures, we recorded
10 traces to inject failure using a poisson distribution per
machine type with a given MTBF and used the same set of
traces for all fault-tolerance schemes. Moreover, failures for
nodes of the same machine type were correlated (i.e., all
nodes of the same type failed together). In all experiments,
we used a diversity constraint of k = 3. We used this method
for all other experiments in this paper to inject failures.

Exp. 2a - Varying Query Runtime (Figure 9): In this
experiment, we executed TPC-H query 5 over different scaling
factors using parameters. This resulted in query execution
times ranging from a few seconds up to multiple hours. We
selected TPC-H query 5 in this experiment since this is a
typical analytical query with multiple join operations and an
aggregation operator on top (see Figure 8). We also used other
queries of the TPC-H benchmark but they showed similar
results when varying their runtime.

For this experiment, the output of every join operator was
defined to be a free operator (marked with the numbers 1-5 in
Figure 8) and thus could be selected by our cost-model to be
materialized. Thus, for each enumerated plan, our procedure
enumerated 25 materialization configurations when pruning
was deactivated. Moreover, we injected mid-query failures
using a MTBF of 1 day per node.

The result of this experiment is shown in Figure 9(a). The
x-axis shows the baseline-runtime of the query (i.e., when no
failure is happening) and the y-axis shows the overhead as
discussed before. The cost-based scheme has the lowest over-
head for all queries; starting with 0% for short-running queries
and ending with 247% for long-running queries. Thus, our
scheme effectively finds the best materialization configuration
for different queries of different length. Compared to our cost-
based scheme, the other schemes impose a higher overhead
depending on the query runtime. Both no-mat schemes pay
0% overhead for short-running queries. However, for queries
with a higher runtime, the overhead increases for both no-
mat schemes whereas the restart-based scheme shows a much
stronger increase. In fact, queries with a runtime higher than
7, 820s never finished in our experiment. The all-mat scheme
pays 30% overhead for short-running queries which is pure
materialization overhead (i.e., no failure occurred). However,
for a higher baseline-runtime the overhead of this scheme does
not increase as strong as for the no-mat schemes but still is
30% higher compared to overhead of the cost-based scheme.

Figure 9(b) shows the same experiment as before with
increased I/O costs (i.e., materialization costs were approx.

7× higher than those used in Figure 9(a))1 The rationale
of this experiment is to show the effect of slower external
storage systems (such as HDFS) on the overhead of all
schemes. As before, the cost-based scheme has the lowest
overhead for all queries (i.e., from short- to long-running
queries). However, the overhead for queries with a higher
runtime is increasing stronger compared to Figure 9(a) since
fewer intermediates are materialized and thus higher recovery
costs need to be paid. Moreover, another difference is that
the all-mat scheme has to pay the higher materialization
overhead for all queries making this scheme unattractive in
this setting. Finally, the two no-mat schemes (lineage and
restart) are not affected by the increased I/O costs since they
do not materialize additional intermediates.
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Fig. 9. Varying Runtime

Exp. 2b - Varying MTBF (Figure 10): This experiment
shows the overhead of the fault-tolerance schemes mentioned
before when varying the MTBF. In this experiment, we exe-
cuted TPC-H query 5 over SF = 100 using a low selectivity.
This resulted in a query execution time of 905.33s (i.e.,
approx. 15 minutes) as a baseline-runtime when injecting no
failures and adding no additional materializations in the plan.
In order show the overhead, we executed the same query when
applying different fault-tolerance strategies and injected mid-
query failures using the following MTBFs per node to cover
a range of different failure rates: 1 week, 1 day, and 1 hour.

Figure 10 shows the overhead of the individual schemes
under varying MTBFs. We executed this experiment for
normal I/O costs (see Figure 10(a)) and high I/O costs where
materialization costs were approx. 7× higher as in the normal
I/O case (see Figure 10(b)). Both figures show the same trends
as already reported before in Figure 9(a) and Figure 9(b): The
cost-based scheme has the lowest overhead for all MTBFs
when compared to the other schemes using the same MTBF.

1We use different I/O rates of the EBS volumes.

20



 0

 100

 200

 300

 400

 500

 600

all-m
at

no-m
at (lineage)

no-m
at (restart)

cost-m
at

O
ve

rh
e
a
d
 (

in
 %

)

Cluster A (10 nodes, MTBF=1 week)

3
4

.1
3

0 0 0

Cluster B (10 nodes, MTBF=1 day)

4
0

.9
3

2
9

.3
4

5
7

.7
4

2
9

.3
0

Cluster C (10 nodes, MTBF=1 hour)

7
3

.8
3

8
4

.6
6

2
3

1
.8

0

5
2

.1
2

(a) Normal I/O Cost

 0

 100

 200

 300

 400

 500

 600

all-m
at

no-m
at (lineage)

no-m
at (restart)

cost-m
at

O
ve

rh
e
a
d
 (

in
 %

)

Cluster A (10 nodes, MTBF=1 week)

2
1

6
.4

6

0 0 0

Cluster B (10 nodes, MTBF=1 day)

2
3

3
.1

4

2
9

.3
4

5
7

.7
4

2
9

.3
0

Cluster C (10 nodes, MTBF=1 hour)

3
0

8
.6

4

8
4

.6
6

2
3

1
.8

0

6
4

.9
0

(b) High I/O Cost

Fig. 10. Varying MTBF

Both not-mat schemes are again independent of the I/O cost.
Moreover, they do show a strong increase in the overhead
for lower MTBFs (i.e., higher failure rates) compared to
our cost-based scheme. As to be expected, the efficiency of
the all-mat scheme depends mainly on the I/O costs. When
having high I/O costs (Figure 10(b)), this scheme again has
the highest overhead compared to other schemes since it pays
the materialization costs for all operators independent of the
MTBF.

VI. RELATED WORK

Amazon EC2 Spot Instances: There exist different
approaches on (cost-efficient) checkpoint techniques for Spot
Instances [15], [16], [7]. Moreover, different approaches for
bidding strategies have been proposed and evaluated [9],
[10]. However, to the best of our knowledge there is no work
that is particular targeting PDEs on Spot Instances nor has
there been work on automatically finding the best cluster
configuration for given user constraints on the budget and the
availability as described in this paper.

Fault-tolerance Schemes: Fine-granular fault-tolerance
scheme are typically found in modern PDEs (such as Hadoop
[1], Shark[14], Dryad [6]) as well as in many stream pro-
cessing engines [5], [11]. While stream processing engines
checkpoint the internal state of each operator for recovering
continuous queries, MapReduce-based systems [4] such as
Hadoop [1] typically materialize the output of each operator to
handle mid-query failures. For being able to recover, they rely
on the fact that the intermediate results are persistent even
when a node in the cluster fails, which requires expensive
replication and prevents support for latency-sensitive queries.

Other systems, like Impala [2] and Shark [14] store their
intermediates in main-memory in order to better support short
running latency-sensitive queries. Moreover, Shark uses the
idea of resilient distributed datasets [17], which store their
lineage in order to enable re-computation instead of replicating
intermediates. However, all of these systems still materialize
the output of each operator.

VII. CONCLUSIONS

In this paper, we present a novel PDE called Spotgres that
can be deployed in a cost-efficient and reliable manner on
Amazon’s Spot Instances. Spotgres has two important features:
(1) a constraint-based bid advisor which finds an optimal
cluster configuration (i.e., a set of bids) based on a given set of
constraints and (2) an cost-based fault-tolerance scheme that
takes various parameters (such as MTBF and query statistics)
into account to efficiently execute analytical queries under
mid-query failures. Our experiments show that Spotgres is able
to deliver the same query performance as a traditional PDE
on an On-demand cluster with only 1% of the total costs.
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