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Abstract
Parallel database systems are major platforms for sup-
porting analytical queries over large data sets. However,
in order to offer SQL-like services for data analytics in
the cloud, providers such as Amazon and Google do of-
ten build their own systems (e.g., BigTable). One reason
is that existing database systems do not fulfill important
requirements such as elasticity and fine-grained fault-
tolerance. In this poster, we present XDB [2, 3], a parallel
database system which implements two novel concepts:
(1) a partitioning scheme that supports elasticity with re-
gard to data and queries, and (2) a fine-grained fault-
tolerance scheme for short- and long-running queries.

1 Elastic Partitioning Scheme
The elastic partitioning scheme is designed to satisfy
the following requirements: (1) data used for joins over
foreign-key (fk) relationships should be co-located on
the same node, and (2) tables should be partitioned
into small partitions whose size is bound by a user-
given threshold such that the table data can be easily
re-distributed without re-partitioning.

In order to meet these requirements, we first present
a novel partitioning method called reverse-reference
(RREF) partitioning. RREF-partitioning is similar to ref-
erence (REF) partitioning [5], which equi-partitions a
table with respect to another table based on a referen-
tial constraint. RREF-partitioning works in the oppo-
site direction of a referential constraint, which means
that it might introduce duplicates in different partitions.
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Figure 1: Partitioned TPC-H Schema (excerpt)

The procedure for partitioning all tables of a given
schema is as follows: we first partition the largest ta-
ble such that the user-given threshold is not exceeded.
This can be achieved by a variant of HASH-partitioning,
which additionally splits partitions if the threshold is ex-
ceeded. Starting from the largest table, all other tables
are recursively partitioned using the REF- or the RREF-
partitioning method. Figure 1 shows the result of par-
titioning three tables of the TPC-H schema [1] using a
threshold of 100k tuples: the largest table PS is first split
into 8 parts, while the other tables are RREF-partitioned.

2 Fine-grained Fault-Tolerance
Typically, databases handle node failures by restarting
the complete query on a replica of the data. This scheme
is good for short running queries and clusters, where
node failures are rare. However, when running on clus-
ters of commodity machines or on IaaS offerings (such
as Amazon’s Spot Instances as an extreme case) node
failures are much more likely. In this case, a fine-grained
fault-tolerance scheme which supports recovery from
mid-query faults is essential to save computation costs
and to deliver a decent performance.

The goal of the fine-grained fault-tolerance scheme
in XDB is to recover from mid-query faults (i.e., to
use materialized intermediate results to re-start a query).
Compared to other existing systems like Hadoop [4, 6]
and SCOPE [7], which implement a fine-grained fault-
tolerance scheme by materializing each intermediate re-
sult, XDB materializes only some selected intermediate
results by using a cost model, which takes the over-
heads for materialization into account. The main goal
of our cost model is to find materializations, such that
the success-rate to finish a query is maximized while the
overall run-time of that query is minimized. That way
XDB is able to decide that short-running queries often
do not benefit from materializing intermediate results.
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