
XDB - A novel Database Architecture for
Data Analytics as a Service

Carsten Binnig, Abdallah Salama, Alexander C. Müller (University of Mannheim)
Erfan Zamanian, Harald Kornmayer (DHBW Mannheim)

Sven Lising (GSRN Mannheim)

Abstract
Parallel database systems are major platforms for sup-
porting analytical queries over large data sets. However,
in order to offer SQL-like services for data analytics in
the cloud, providers such as Amazon and Google do of-
ten build their own systems (e.g., BigTable). One reason
is that existing database systems do not fulfill important
requirements such as elasticity and fine-grained fault-
tolerance. In this poster, we present XDB [2, 3], a parallel
database system which implements two novel concepts:
(1) a partitioning scheme that supports elasticity with re-
gard to data and queries, and (2) a fine-grained fault-
tolerance scheme for short- and long-running queries.

1 Elastic Partitioning Scheme
The elastic partitioning scheme is designed to satisfy
the following requirements: (1) data used for joins over
foreign-key (fk) relationships should be co-located on
the same node, and (2) tables should be partitioned
into small partitions whose size is bound by a user-
given threshold such that the table data can be easily
re-distributed without re-partitioning.

In order to meet these requirements, we first present
a novel partitioning method called reverse-reference
(RREF) partitioning. RREF-partitioning is similar to ref-
erence (REF) partitioning [5], which equi-partitions a
table with respect to another table based on a referen-
tial constraint. RREF-partitioning works in the oppo-
site direction of a referential constraint, which means
that it might introduce duplicates in different partitions.

Copyright c© 2013 by the Association for Computing Machinery, Inc.
(ACM). Permission to make digital or hard copies of portions of this
work for personal or classroom use is granted without fee provided
that the copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the first
page in print or the first screen in digital media. Copyrights for com-
ponents of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific per-
mission and/or a fee.

SoCC’13, 1–3 Oct. 2013, Santa Clara, California, USA.
ACM 978-1-4503-2428-1.
http://dx.doi.org/10.1145/2523616.2525947

!"#$%!%
!!"#$%&$'($
)*+*,-./0&1$
2'3!4(5$6$

$
&$'()*+,%-../%

01!!234#%0%
!!"#$%&$'($
)7+78**/0&1$
2'3!4(5$6$

$
&$'()*+,%5./%

!"#$01!!%!0%
93(9$%&$$

)*7+78**/0&1$
2'3!4(5$6$

$
&$'()*+,%6../%

7% 7%

Figure 1: Partitioned TPC-H Schema (excerpt)

The procedure for partitioning all tables of a given
schema is as follows: we first partition the largest ta-
ble such that the user-given threshold is not exceeded.
This can be achieved by a variant of HASH-partitioning,
which additionally splits partitions if the threshold is ex-
ceeded. Starting from the largest table, all other tables
are recursively partitioned using the REF- or the RREF-
partitioning method. Figure 1 shows the result of par-
titioning three tables of the TPC-H schema [1] using a
threshold of 100k tuples: the largest table PS is first split
into 8 parts, while the other tables are RREF-partitioned.

2 Fine-grained Fault-Tolerance
Typically, databases handle node failures by restarting
the complete query on a replica of the data. This scheme
is good for short running queries and clusters, where
node failures are rare. However, when running on clus-
ters of commodity machines or on IaaS offerings (such
as Amazon’s Spot Instances as an extreme case) node
failures are much more likely. In this case, a fine-grained
fault-tolerance scheme which supports recovery from
mid-query faults is essential to save computation costs
and to deliver a decent performance.

The goal of the fine-grained fault-tolerance scheme
in XDB is to recover from mid-query faults (i.e., to
use materialized intermediate results to re-start a query).
Compared to other existing systems like Hadoop [4, 6]
and SCOPE [7], which implement a fine-grained fault-
tolerance scheme by materializing each intermediate re-
sult, XDB materializes only some selected intermediate
results by using a cost model, which takes the over-
heads for materialization into account. The main goal
of our cost model is to find materializations, such that
the success-rate to finish a query is maximized while the
overall run-time of that query is minimized. That way
XDB is able to decide that short-running queries often
do not benefit from materializing intermediate results.

References
[1] TPC-H. http://www.tpc.org/tpch/.

[2] XDB. http://code.google.com/p/xdb/.

[3] C. Binnig, A. Salama, E. Zamanian, A. C. Müller,
S. Listing, and H. Kornmayer. XDB - A novel Database
Architecture for Data Analytics as a Service. Technical
report, University of Mannheim, 2013. http://pi1.
informatik.uni-mannheim.de/filepool/
publications/XDB/xdb_techreport.pdf.

[4] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–
113, 2008.

[5] G. Eadon, E. I. Chong, S. Shankar, A. Raghavan, J. Srini-
vasan, and S. Das. Supporting table partitioning by ref-
erence in Oracle. In SIGMOD Conference, pages 1111–
1122, 2008.

[6] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
Inc., 1st edition, 2009.

[7] J. Zhou, N. Bruno, M.-C. Wu, P.-Å. Larson, R. Chaiken,
and D. Shakib. SCOPE: parallel databases meet MapRe-
duce. VLDB J., 21(5), 2012.

http://www.tpc.org/tpch/
http://code.google.com/p/xdb/
http://pi1.informatik.uni-mannheim.de/filepool/publications/XDB/xdb_techreport.pdf
http://pi1.informatik.uni-mannheim.de/filepool/publications/XDB/xdb_techreport.pdf
http://pi1.informatik.uni-mannheim.de/filepool/publications/XDB/xdb_techreport.pdf

	Elastic Partitioning Scheme
	Fine-grained Fault-Tolerance

